Right choice for ultimate yield
LSIS strives to maximize customers' profit in gratitude of choosing us for your partner.

SV-iV5 User Manual

2.2-37kW [200V] / 2.2-500kW [400V]

! Safety Instructions

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for quick reference.

Safety Instructions

To prevent injury and property damage, follow these instructions. Incorrect operation due to ignoring instructions will cause harm or damage.

The seriousness of which is indicated by the following symbols.

Symbol		Meaning
Λ	Warning	This symbol indicates the possibility of death or serious injury.
A	Caution	This symbol indicates the possibility of injury or damage to property.

Remark
- Even if the instructions are indicated as 'Caution', it can cause a
serious result according to the kind of operation and the environ-
ment.

The meaning of each symbol in this manual and on your equipment is as follows.

Symbol	Meaning
$!$	This is the safety alert symbol. Read and follow instructions carefully to avoid dangerous situation.
4	This symbol alerts the user to the presence of "dangerous voltage" inside the product that might cause harm or electric shock.

After reading this manual, keep it in the place that the user always can contact easily.

This manual should be given to the person who actually uses the products and is responsible for their maintenance.

A WARNING

- Do not remove the cover while power is applied or the unit is in operation.
Otherwise, electric shock could occur.

A WARNING

- Do not run the inverter with the front cover removed.

Otherwise, you may get an electric shock due to high voltage terminals or charged capacitor exposure.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you may access the charged circuits and get an electric shock.
- Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below DC 30V).
Otherwise, you may get an electric shock.
- Operate the switches with dry hands.

Otherwise, you may get an electric shock.

- Do not use the cable when its insulating tube is damaged.

Otherwise, you may get an electric shock.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.
Otherwise, you may get an electric shock.

\triangle CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable material nearby.
Otherwise, fire could occur.
- Disconnect immediately the input power if the inverter gets damaged.
Otherwise, it could result in a secondary accident and fire.
- After the input power is applied or removed, the inverter will remain hot for a couple of minutes.
Otherwise, you may get bodily injuries such as skin-burn or damage.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive.
Otherwise, fire or accident could occur.

Caution for Use

■ Transportation and Installation

- Be sure to carry inverter in a proper way suitable for its weight, or it may result in damage to inverter.
- Be sure to use heat-treated wooden crate when you adopt wooden packaging for the product.
- Do not pile up inverters above allowable limit.
- Be sure to install the inverter as directed in this instruction manual.
- Do not turn off the power supply to the damaged inverter.
- Do not open the front cover while carrying the inverter.
- Do not place the heavy material on the inverter.
- The direction of installation should be observed properly as criterions specified in this manual show.
- Make sure that you should not put screw, metal material, water, oil and the inflammable something else.
- Keep in mind that inverter is very vulnerable to drop from the mid air and strong shock.
- Don't let the inverter exposed to rain, snow, fog, dust, etc.
- Do not cover, nor block, the ventilating system having cooling fan. It may cause the inverter overheated.
- Be sure to check the power is off when installing the inverter.
- To prevent the risk of fire or electric shock, keep the connected wire in a sound condition. Use the wire that meets the standard in a recommended length.
- Be sure to ground the inverter. (Under 10Ω to 200 V class, Under 100Ω to 400 V class)
- Be certain to use the inverter under the following conditions.

Environment	Description Ambient Temperature$-10 \sim 40{ }^{\circ} \mathrm{C} \quad$ (Non-frozen) (Less than 80% load is recommended at $50^{\circ} \mathrm{C}$.)
Ambient Humidity	Below $90 \% \mathrm{RH}$ (Dewdrop should not be formed)
Storage Temperature	$-20 \sim 65^{\circ} \mathrm{C}$
Ambient Condition	Free of corrosive gas, inflammable gas, oil sludge and dust, etc
Altitude/Vibration	Below 1000 m above sea level, Below $5.9 \mathrm{~m} / \mathrm{sec}^{2}$ $(=0.6 \mathrm{~g})$
Ambient Air Pressure	$70 \sim 106 \mathrm{kPa}$

■ Wiring

\triangle Caution

- A professional installer should have done the wiring and checking.
- Do wiring after installing the inverter body.
- Do not connect phase-leading capacitors, surge filter, radio noise filter to the output of inverter.
- Output terminals (terminals named U, V, W respectively) should be connected in a proper phase sequence.
- Make sure that there is not any short circuit terminal, wrong wiring. It may cause spurious operation or failure.
- Refrain from using a cable other than the cable shielded when you connect control circuit wiring.
- Adopt the shielded wire only when wiring the control circuit. It may cause the failure of inverter in its operation. Use the twisted pair shield wire for the ground terminal of the inverter.

```
4 Warning
- To prevent an electric shock, be sure to check if MCCB and MC are switched OFF before wiring
```

Otherwise, it may cause an electric shock.

■ Adjustment before starting trial operation

- Do not supply the excessive range of voltage displayed in the user manual to the each terminal. It may cause damage to the inverter.
- Current hunting can be occurred in the low speed territory during testing. It occurs where the capacity is above 110 kW with no-load and the axis is not connected.
The current hunting has a gap according to the motor characteristic. It will be disappeared when the load is connected and it is not the indication of abnormal condition.
If the hunting is occurred seriously, please stop the testing and operates with the load.
- Be sure to check relevant parameters for the application before starting trial operation.

■ How to Use

- Be sure not to approach the machine when retry function is selected. The machine may start working suddenly.
- Stop key on the keypad should be set to be in use. For safety, additional emergency stop circuit should be required.
- Inverter restarts if alarm condition is cleared while FX/RX signal is on. Therefore, be sure to operate the alarm reset switch after checking if FX / RX signal is off.
- Never modify the inverter for inappropriate use.
- When a magnetic contactor is installed on the power source, do not frequently start or stop using this magnetic contactor. It may cause the failure of inverter.
- Noise filter should be used for the minimization of troubles by electromagnetic noise. Electronic equipments close to the inverter should be protected against the damage caused by troubles.
- Be sure to install the AC reactor at the input of inverter in case of input voltage unbalance. Otherwise, generator or phase-leading capacitors may be destroyed by the harmonic current from inverter.
- If 400 V class motor is used with the inverter, insulation-enforced motor should be used or countermeasures against the suppression of microsurge voltage generated by the inverter should be carried out.

Otherwise, micro-surge voltage is generated across input terminal for the motor and this voltage lowers allowable insulation break-down voltage and then, may cause the destruction of the motor.

- Be sure to set the parameters once more, in case of initialization of parameters, all values of parameters is set to values of factory setting.
- High speed operation can be set easily, therefore be sure to check the performance of motor or machine before changing parameter value.
- DC braking function cannot produce a zero-servo torque. If required, additional equipment should be installed.
- When inverter trip or emergency stop (BX) occurs without keypad connected, LED on the control board will blink by the interval of 0.5 sec . But LED will blink by 1 sec when keypad is connected. This function displays which trip will be occurred according to the connection of keypad.
- Do not change wiring, nor disconnect connector or option card during the operation of inverter.
- Do not disconnect the motor wiring while the voltage of inverter is output. Mishandling may cause damage to the inverter.
- Be sure to handle the inverter and option care in the order recommended in the Electro Static Discharge (ESD) Countermeasure. Mishandling may lead to damage to the circuit on the PCB caused by ESD.

■ Countermeasure against malfunction troubles

- If inverter is damaged and then gets into uncontrollable situation, the machine may lead to the dangerous situation, therefore to avoid this situation, be sure to install the additional equipments such as brake.

■ Maintenance, inspection and parts replacement

- Do not perform the megger (insulation resistance check) test on the control board.
- Please refer to intervals for parts replacement on Chapter 8.

■ Disposal

- Handle the inverter as an industrial waste when disposing of it.
- Our inverter contains the raw material of value that can be recycled from the aspect of energy and resource preservation. All the package materials and metal parts are recyclable. Plastics are also recyclable, but may be burnt under the controllable environment depending on the local regulation.

■ General Instruction

- The drawing in this user manual is represented the details of the inner inverter, so, the drawing is described without cover part and circuit breaker. But, cover and circuit breaker should be mounted before the operation following to the instruction of user manual.
- Turn off the power of inverter when the inverter is not used.

■ Cleaning

- Be sure to operate the inverter under a clean condition.
- When cleaning the inverter, be sure to check the inverter is off. Start cleaning it with all the plugs connected with the inverter socket removed.
- Never clean the inverter using wet cloth or water. Wipe the stained area softly using the cloth completely wet with a neutral detergent or ethanol.
- Never use the solution such as acetone, benzene, toluene, alcohol, etc. They may cause the coating on the surface of the inverter to peel off. In addition, do not clean LCD display, etc. using detergent or alcohol.

■ Storage

Be sure to keep the inverter under the following conditions if you don't use it for a long period of time.

- Make sure that you satisfy the recommended storage environment. (See page v.)
- If the storage period exceeds 3 months, be sure to keep it at the ambient temperature of $-10 \sim+30^{\circ}$ C to prevent ${ }^{\text {『 }}$ Deterioration by Temperature』 of electrolytic condenser.
－Be sure to keep it in a proper package to prevent moisture，etc．Put the desiccant（Silica Gel），etc．，in the package so that the relative humidity in the package can be maintained at 70% or less．
－When it is exposed to moisture or dust（mounted on the ${ }^{『}$ System』 or ${ }^{『}$ Control Panel』，etc．installed at the construction site），remove it and then keep it under the environmental condition specified in the page v.

\triangle Caution

－If the inverter has been left long with electric current not charged，the nature of electrolytic condenser can be deterio－ rated．So be sure to have it plugged in for $\mathbf{3 0}$～ $\mathbf{6 0}$ minutes once a year．Do not perform wiring and operation of the output side （secondary side）．

This User's Manual is aimed at.

Describing specification, installation, operation, function, and maintenance of SV-iV5 series inverter provided for the users who are familiar with and having basic experience in the inverter.

Be sure to understand function, performance, installation, and operation of the product by reading through this User's Manual completely prior to your use of SV-iV5 series inverter that you have purchased. In addition, you are required to have this User's Manual properly delivered to the end-user and maintenance manager.

Option Module Guide

The following Option Module Guides will be provided when you purchase the applicable Option Module. In addition, if you access our homepage http://www.Isis.com/ [Customer Support] - [Download Data Room], you can download it in PDF file.

- IV5 EL (Elevator) I/O Option Module Guide (Korean)
- IV5 SYNC Option Module Guide (Korean)
- IV5 SIN/COS Encoder Card Option Module Guide (Korean)
- IP5A/IV5 RS-485 \& Modbus-RTU Option Module Guide (Korean)
- IS5/IP5A/IV5 Profibus-DP Card Option Module Guide (Korean)
- IS5/IP5A/IV5 DeviceNet Card Option Module Guide (Korean)
- IP5A/IV5 CC-Link Card Option Module Guide (Korean)
Chapter 1 Introduction
1.1 Key Features 1-1
1.2 Inverter Nameplate and Model 1-2
Chapter 2 Specification
2.1 Standard Specification 2-1
2.2 Common Specification 2-3
Chapter 3 Installation and Wiring
3.1. Caution on Installation 3-2
3.2 Basic Wiring 3-4
3.3 Power Circuit Terminal 3-11
3.4 Control Board and Terminal 3-18
3.5 Terminal of the Auxiliary Power Supply 3-27
Chapter 4 Trial Operation
4.1 Keypad Operation 4-1
4.2 Keypad LCD Display 4-2
4.3 Setting of Parameter Values 4-3
4.4 Data Group 4-4
4.5 Auto-Tuning 4-6
4.6 Pulse Encoder Check 4-10
4.7 Operation by Keypad 4-11
4.8 Operation by Control Terminal 4-12
Chapter 5 Function Code Table
5.1 Display Group (DIS_[][]) 5-1
5.2 Digital DIO Group (DIO_[][]) 5-3
5.3 Parameter Group (PAR_[][]) 5-7
5.4 Function Group (FUN_[][]) 5-9
5.5 Control Group (CON_[][]) 5-13
5.6 User Group (USR_[][]) 5-15
5.7 Second motor Group (2nd_[][]) 5-16
5.8 Option Group (EXT_[][]) 5-17
5.9 Analog AIO Group (AIO_[][]) 5-19
5.10 Sensorless control Group (SLS_[][]) 5-24
Chapter 6 Inspection and Replacement
6.1 Precautions 6-1
6.2 Checking Points 6-1
6.3 Routine Checking 6-2
6.4 Regular Checking (1 year interval) 6-4
6.5 Meggar Test 6-6
6.6 Regular Checking (2 year interval) 6-7
6.7 Replacement Interval and Maintenance of the Key 6-7
Components
6.8 How to Check at Diode Module \& IGBT Inspection 6-8
Chapter 7 Troubleshooting and Maintenance
7.1 Fault Display 7-1
7.2 Monitoring Fault Condition 7-4
7.3 Fault Reset 7-4
7.4 Fault Remedy 7-4
Chapter 8 Accessories
8.1 MCCB(LS), ELB(LS), Magnetic contactor(LS), Input/Output Wire Specifications 8-1
8.2 AC input fuse, AC reactor, DC reactor 8-2
8.3 The selection of Braking Resistor and the Unit 8-3
Chapter 9 Dimensions 9-1

Chapter 1 - Introduction

This instruction manual is designed for LS STARVERT-iV5 series Vector Control Inverters, which have excellent characteristics in speed and torque control with pulse encoder mounted on the shaft of 3 phase induction motor, and covers installation, maintenance, wiring and operation for these inverters.

1.1 Key Features

- Current Controlled Vector Control Inverter with Speed Sensor using IGBT as Power Semiconductor Device.
- Tension/Torque Control and Wide Variety of Process Control
- Process PI Control, Draw Control, Droop Control, Synchronous Control, WEB Control etc.
- Auto-tuning of Motor Parameters for Precise Speed/Torque Control : Rotational/Standstill mode
- Encoder error (H/W and S/W) detection function
- Auxiliary battery function and Emgergent operation by battery operation
- Various option for communication and application

Inverter Application

Application	Applicable Machine/System	Features
Process Control	- Steel Strip - Paper Mill - Textile - Film - Coater - Printing Machine	Tension Control Wide Range of Speed Control
Hoisting Control	- Lifts (Elevators) - Parking - Stacker Crane - Crane - Hoist	High Speed Operation High Starting Torque Positioning Wide Range of Speed Control
Machine Control	- Machine Tool - Wire Drawing - Extruder	High Speed Operation High Starting Torque Positioning
Others	- Conveyor - Industrial Washing Machine	High Speed Operation Positioning

1.2 Inverter Nameplate and Model

1.2.1 Inverter nameplate (Example)

\longleftarrow Inverter Model Name
\longleftarrow Input Power Source Specifications
\longleftarrow Rated Capacity
\longleftarrow Output Power Source Specifications
\longleftarrow Running Freq. / Rated Output Current
\longleftarrow Output Capacity
\longleftarrow Bar Code
\longleftarrow Serial Code

1.2.2 Inverter model name

(Electrical specification of MD type is based on specifications of $5.5 \sim 2.2 \mathrm{~kW}$ except for the specification of exterior and its size.)

- Input Voltage
(380V) : 380V Input Voltage - 30~220kW(400V)
Blank : Below 22kW (200V/400V) and 280~500kW(400V)
- ENCODER TYPE
- Blank : 5V Line Drive, 15V Open Collector
- 24V ENC : 24V Line Drive/Open Collector

Chapter 2 - Specification

2.1 Standard Specification

2.1.1 200V Class (AC power input type)

SV[][][iV5-2(DB)			022	037	055	075	110	150	185	220	300	370
Max. applicable motor output ${ }^{\text {Note1) }}$		[HP]	3	5	7.5	10	15	20	25	30	40	50
		[kW]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
Capacity [kVA] ${ }^{\text {Note2) }}$			4.5	6.1	9.1	12.2	17.5	22.5	28.2	33.1	46	55
R Rated current [A]			12	16	24	32	46	59	74	88	122	146
O	Speed		$0 \sim 3600$ (rpm)									
	Voltage		$0 \sim 200 \mathrm{~V}\left(230 \mathrm{~V}^{\text {Note3 }}\right)$									
	Voltage		3中 $200 \sim 230 \mathrm{~V}$ (-10\% ~ +10\%)									
Frequency			$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$									
Inverter weight [kg(lbs)]			$\begin{gathered} 6 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (13) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 14 \\ (30) \\ \hline \end{array}$	$\begin{gathered} 14 \\ (30) \\ \hline \end{gathered}$	$\begin{array}{r} 27.5 \\ (60) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27.5 \\ (60) \\ \hline \end{array}$	$\begin{gathered} 28 \\ (61) \\ \hline \end{gathered}$	$\begin{aligned} & 28 \\ & (61) \\ & \hline \end{aligned}$	$\begin{gathered} 42 \\ \end{gathered}$	$\begin{gathered} 42 \\ \text { (93) } \\ \hline \end{gathered}$

2.1.2 400V Class (AC power input type)

SV[][][]iV5-4(DB)			022	037	055	075	110	150	185	220	300	370	450
Max. applicable motor output ${ }^{\text {(Note1) }}$		[HP]	3	5	7.5	10	15	20	25	30	40	50	60
		[kW]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
Capacity [kVA] ${ }^{\text {Note2) }}$			4.5	6.1	9.1	12.2	18.3	22.9	29.7	34.3	46	57	70
) Rated current [A]		6	8	12	16	24	30	39	45	61	75	91
	Speed		0 ~ 3600 (rpm)										
	Voltage		$0 \sim 380 \mathrm{~V}\left(480^{\text {Note3 }}\right.$)										
Inverter weight [kg(lbs)]			$\begin{array}{\|c} \hline 6 \\ (13) \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (13) \end{array}$	$\begin{gathered} 14 \\ (30) \end{gathered}$	$\begin{gathered} 14 \\ (30) \end{gathered}$	$\begin{gathered} \hline 27 \\ (59) \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ (61) \\ \hline \end{array}$	$\begin{gathered} 28 \\ (61) \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ (61) \\ \hline \end{array}$	$\begin{gathered} \hline 42 \\ (93) \end{gathered}$	$\begin{array}{\|c} \hline 42 \\ (93) \end{array}$	$\begin{gathered} 63 \\ (139) \end{gathered}$

2. Specification

SV[][][]iV5-4		550	750	900	1100	1320	1600	2200	2800	3150	3750	5000
Inverter weight [kg(lbs)]		$\begin{gathered} 63 \\ (139) \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ (150) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ (216) \end{gathered}$	$\begin{array}{\|c\|} \hline 98 \\ (216) \end{array}$	$\begin{array}{\|c\|} \hline 122 \\ (269) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 122 \\ (269) \end{array}$	175 (386)	243 (536)	380 (838)	380 (838)	476 $(1050$
Input	Voltage	$3 \phi 380 \sim 480 \mathrm{~V}(-10 \% ~ \sim ~+10 \%){ }^{\text {Note4 }}$										
	Frequency	$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$										

※ The electrical specifications of the MD type (2.2~22kW Class) are the same as the above. (In case of 2.2 and 3.7 kW products, refer to the weight in above table.)

SV[][][]iV5- 2/4DB(MD)	$\mathbf{0 5 5}$	$\mathbf{0 7 5}$	$\mathbf{1 1 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 5}$	$\mathbf{2 2 0}$
Inverter weight $[\mathrm{kg}(\mathrm{lbs})]$	7.7 (16.9)	7.7 (16.9)	13.7 (30.2)	13.7 (30.2)	20.3 (44.7)	20.3 (44.7)

2.1.3 400V Class (DC power input type)

SVI][][iV $5-4(\mathrm{DC})$			055	075	110	150	185	220	300	370	450	550
Max. applicable motor output Note1)		[HP]	7.5	10	15	20	25	30	40	50	60	75
		[kW]	5.5	7.5	11	15	18.5	22	30	37	45	55
Capacity [kVA] ${ }^{\text {Note2) }}$			9.1	12.2	18.3	22.9	29.7	34.3	46	57	70	85
He Rated current [A]			12	16	24	30	39	45	61	75	91	110
O	Speed		$0 \sim 3600$ (rpm)									
Voltage			$0 \sim 380 \mathrm{~V}\left(480 \mathrm{~V}{ }^{\text {Note3 }}\right.$)									
Input rated voltage			DC 540 ~ 680V (+10\%) ${ }^{\text {Note5) }}$									
Inverter weight$[\mathrm{kg}(\mathrm{lbs})]$			$\begin{gathered} 12 \\ (26) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (26) \end{gathered}$	$\begin{aligned} & \hline 24 \\ & (53) \end{aligned}$	$\begin{aligned} & 24.5 \\ & (54) \end{aligned}$	$\begin{gathered} 25 \\ (55) \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & (55) \end{aligned}$	$\begin{aligned} & \hline 38.5 \\ & (84) \end{aligned}$	$\begin{aligned} & 38.5 \\ & (84) \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ (110) \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ (110) \end{gathered}$

SV[][][iV5-4(DC)			750	900	1100	1320	1600	2200	2800	3150	3750	5000
Max. applicable moto output (Note1)		[HP]	100	120	150	175	215	300	373	420	500	666
		[kW]	75	90	110	132	160	220	280	315	375	500
Capacity [kVA] ${ }^{\text {Note2) }}$			116	140	170	200	250	329	416	468	557	732
O	Rated current [A]		152	183	223	264	325	432	546	614	731	960
	Speed		$0 \sim 3600$ (rpm)									
	Voltage		$0 \sim 380 \mathrm{~V}\left(480 \mathrm{~V}^{\text {Note3 }}\right.$)									
Input rated voltage			DC 540 ~ 680V (+10\%) ${ }^{\text {Note5) }}$									
Inverter weight [kg(lbs)]			$\begin{array}{\|c} \hline 55 \\ (121) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 79 \\ (174) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 79 \\ (174) \end{array}$	$\begin{array}{\|c} \hline 98.5 \\ (217) \\ \hline \end{array}$	$\begin{aligned} & \hline 98.5 \\ & (217) \end{aligned}$	154.5 (340)	206	343 (756)	343 (756)	466 (1028)

Note)

1. It represents the output capacity of maximum applicable motor in case 4-pole motor is used. (220 V is based on 220 V and 400 V is based on 440 V .)
2. Rated capacity $\left(=\sqrt{ } 3^{*} V^{*} \mathrm{I}\right)$ is calculated based on 220 V for 200 V class, 440 V for 400V class.
3. Maximum output voltage cannot be generated above specified input voltage.
4. Derate the rated current by 10% when the input voltage is in the range above 480V.
5. Rated current is derated by 10% above 680 VDC of input voltage.
※ 500kW AC/DC input type products will be released soon.

2.2 Common Specification

Items		Detailed Specification
Inverter type		Voltage source inverter using IGBT

Items		Detailed Specification
	Analog input	3 channels (AI1, Al2, Al3*, (AI4,AI5: Extended I/O)) $-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}, 0 \rightarrow 20 \mathrm{~mA}$ $20 \rightarrow 0 \mathrm{~mA}$, Motor NTC (*Only AI3(Al5:Extended I/O) selectable) - Selectable among 17 different user-defined functions - AI3(AI5): Motor NTC only available with Higen motors
	Contact input	- FX, RX, BX, RST, P1 ~ P7 - Selectable among 46 different user-defined input functions
	Analog output	2 channels (AO1, AO2) $-10 \mathrm{~V} \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}$, $10 \rightarrow 0 \mathrm{~V}$ output Selectable among 39 different user-defined functions
	Contact output	2 channels (1A-1B, 2A-2B) Fault alarm relay: 1 channel (30A-30C, 30B-30C)
	Open Collector	1 Channel (OC1/EG)
	Protection	Overcurrent, Overvoltage, Low voltage, Inverter overheat, Inverter thermal sensor malfunction, Motor overheat, Motor thermal sensor malfunction, Overspeed, Instantaneous IGBT gate block (BX), Fuse blown open, External Trip, Pulse encoder malfunction, Electronic thermal function, Inverter overload, Ground fault current, IGBT short, Communication error, Input/Output phase open protection
	Installation condition	Indoor, Free of Corrosive gas and Direct sunlight (Pollution Degree 2)
	Ambient temperature	$-10 \sim 40^{\circ} \mathrm{C}$ (Non-frozen condition)
	Humidity	Below RH 90\% (Dewdrop should not be formed)
	Cooling method	Forced ventilation by cooling fan
	IP Type	$\begin{aligned} & \text { IP00: } 2.2 \sim 22 \mathrm{~kW} \text { (MD), } 30 \sim 500 \mathrm{~kW} \\ & \text { IP20: } 5.5 \sim 2.2 \mathrm{~kW} \text { (Press) } \\ & \hline \end{aligned}$
	Altitude, Vibration	Below 1000m above sea level, Below $5.9 \mathrm{~m} / \mathrm{s}^{2}(=0.6 \mathrm{G})$

Chapter 3 - Installation and Wiring

This chapter describes general items for the installation and wiring of an inverter and includes instruction for wiring to power terminal and control one and caution in case of wiring, and also explains the function of each terminal for both power and control.

Be sure to check mechanical and electrical installation environment before you start the inverter. Read through the checking list below. Be sure to read through the Caution for Safety on this User's Manual prior to the operation of inverter.

Checking List

- Mechanical Installation Checking List
- Be sure to check the surrounding environment is allowed for operation. (Read through the 'Caution on Installation')
- Inverter is a heat-generating device. Be sure to sufficiently secure the surrounding space to prevent thermal saturation phenomenon.
- Be sure to check air is circulated in a normal condition.
- Be sure to check motor and drive system are ready to start.
- Electrical Installation Checking List
- Make sure that the protective grounding is properly done.
- Replace the condenser with new one if it lasted longer than two years.
- Set the input voltage to the nominal input voltage of the inverter.
- Check if the input voltage connected with R, S, T and then fasten them tightly using an accurate torque wrench.
- Check if input power fuse and circuit breaker are properly installed.
- Install the motor cable away from the other cable.
- Check if the ext. input/output is properly connected.
- Check if the input voltage is properly connected with the output terminal of inverter.

3.1 Caution on Installation

3.1.1 Do not install the inverter in a location where excessive vibration is present.
Be cautious when installing on presses or moving equipment.

3.1.2 Caution on ambient temperature

Ambient temperature greatly affects inverter lifetime, therefore be sure to keep the ambient temperature of installation location at -10 to $40^{\circ} \mathrm{C}$.

3.1.3 Install the inverter on the uninflammable material. The inverter operates at high-temperature.

3.1.4 Avoid a humid and hot location.

3.1.5 Install the inverter in a location free of oil mist and dust.

Totally enclosed panel can be used to protect the inverter against that materials. Cooling air must be clean, free from corrosive materials and electrically conductive dust.

3.1.6 Secure the installation space enough to protect the inverter against the overheating.

At least the room that 30 cm from upper and lower of inverter and 20 cm from left and right of inverter is required for installing more than 30 kW products.

3.1.7 Special care should be taken in case the inverter is to be installed in the panel.

In case more than 2 inverters are to be installed or ventilation fan is to be installed in the panel, make sure that inverter and ventilation fan is properly installed. If they are poorly installed, it causes the increase of an ambient temperature and less effective ventilation. Therefore, be sure to keep the ambient temperature of inverter below the allowable temperature.

3.1.8 Install the inverter tightly not to get loose using proper sized bolt or screw.

3.2 Basic Wiring

Do the wiring of inverter and then check the wiring of main circuit and control circuit before starting it. Read through the checking list as below.

Checking List

Inverter, Peripherals, Option card

Is the inverter supplied in the form as ordered?

- Are the type and numbers of peripherals (Resistance, DC reactor, Noise filter, etc.) supplied as ordered?
- Is the type of option supplied as supplied?

Place of the inverter to be installed and how to install it

- Is the inverter installed on a right place in a right way?

Power voltage, Output voltage

- Is power voltage within the range of inverter input voltage specified?
- Does the rated output comply with the inverter output specification?
- Is the rating done properly?

Main Circuit Wiring

- Is the power input using the circuit breaker?
- Is the rating of the circuit breaker done properly?
- Is the power wiring input properly to the inverter input terminal? [If the input power is connected with the input terminal $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ it may cause damage to the inverter]
- Is the motor wiring connected with the inverter output terminal in a proper phase sequence? (Otherwise, the motor will be rotated adversely.)
- Is 600 V vinyl insulation wire adopted for the power and motor wires?
- Is the main circuit wire in a proper size?
- Is the ground line installed in a proper way?
- Are the screws of the main circuit terminal and the ground terminal fastened tightly?
- In the event several motors are operated with one inverter, does each motor have a overload protecting circuit?
- In the event it adopts braking resistance or braking resistance unit, is an electronic contactor installed at the inverter power side so as to isolate the inverter from the power by protecting the resistance from overload?
- Isn't power condenser, surge killer, or radio noise filter connected with the output side?

Checking List

Control Circuit Wiring

- Is a twisted pair shielded wire adopted for the inverter control circuit wiring?
- Is the covered wire with shield connected with the ground terminal?
- In the event it is operated in 3-Wire sequence, is the control circuit wiring done after the parameter of multi-function contact input terminal is modified?
- Is the wiring of the optional devices done properly?
- Aren't there any wiring mis-connected?
- Are the inverter control circuit terminal screws fastened tightly?
- Aren't there any wire fragments or screw left?
- Doesn't the remaining wire connected with the terminal contact the terminals nearby?
- Is the control circuit wiring isolated from the main circuit wiring in the duct or control panel?
- Doesn't the length of wiring exceed 300 m ? (In the case of the produce of 3.7 kW or less, the entire length of wiring should be 100 m or less)
- Doesn't the wiring of safety input exceed 30 m ?

- AC Power Input Type
 SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB)
 SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) separated from main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: Above 100VA recommended) Only 11~22kW-2(Press) and 5.5~22kW-4(Press/Mold) supported (Other products will be released later.)

AC Power Input Type

SV300, 370iV5-2
SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200, 2800, 3150, 3750iV5-4
Note: AC Fans for 300~2200iV5-4 series should be changed the input power source of transformer $1^{\text {st }}$ tap corresponding with that of inverter. (Factory default is 380 VAC)

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

AC Power Input Type SV5000iV5-4

Note: AC220V (50/60 Hz) must be supplied to FAN1 and FAN2 because 500kW-4 type of inverter has an AC fan of 220 V internally. If not use AC220V power, the inverter is not operated because of 'FAN PWR' until the trip is released after inputting of AC220V. The order of power supply is described as below.
(The order of power on: 220VAC for fan \rightarrow Main power source of 3-phase AC input \rightarrow Run)
(The order of power off: Stop \rightarrow Main power source of 3-phase AC input \rightarrow 220VAC for fan)

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

Note 2) The power of 220 VAC is muset be supplied bacause it is for the operation of internal cooling fan. Use insulated transformer to separate from main power supply. (Transformer capacity: above 500VA recommended)

■ DC Power Input Type

SV055, 075, 110, 150, 185, 220, 2800, 3150, 3700iV5-4DC

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

DC Power Input Type

SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200, 5000iV5-4DC

Warning) It must be energized AC220V $(50 / 60 \mathrm{~Hz})$ to terminal of FAN1 and FAN2 because $30 \sim 500$ kW-4DC series have a cooling fan for AC power drive and MC. If not, Trip (30~160kW: "FAN/MC PWR", 220kW: "FAN PWR") will be occurred. The inverter is not operated unless trip is released after AC220V inputs. The recommended order of power input and cutoff is as shown below.
(The order of power On: $220 \mathrm{VAC} \rightarrow \mathrm{P}(+) / \mathrm{N}(-) \rightarrow$ Run, The opder of power Off: Stop $\rightarrow \mathrm{P}(+) / \mathrm{N}(-) \rightarrow 220 \mathrm{VAC})$

Note) : Main circuit , o :Control circuit
Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

Note 2) The power of 220VAC is must be supplied for the operation of internal cooling fan and/or Magnetic contactor. Use insulated transformer to separate from main power supply.
(30 ~ 160 kW : for the operation of FAN and MC, 220/500kW: for the operation of FAN)
(Transformer capacity: above 30~75kW(100VA), 90~160kW(150VA), 220/500kW(500VA) recommended)

3.3 Power Circuit Terminal

3.3.1 Power circuit terminal arrangement

(1) AC power input type

$\Lambda \quad$ CAUTION
Be sure that " N " is not Neutral Line but DCN(-) and P is $\operatorname{DCP}(+)$.

■ SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB)
SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)

- SV110, 150, 185, 220iV5-2(DB)(MD)

SV110, 150, 185, 220iV5-4(DB)(MD)
*(MD) : Mold Type

- SV300, 370iV5-2

SV300, 370, 450, 550, 750iV5-4

■ SV900, 1100, 1320, 1600, 2200iV5-4

R	S	T	G	U	V	W	$P 1(+)$	$P 2(+)$	$N(-)$

■ SV2800, 3150, 3750, 5000 iV5-4

(2) DC power input type

■ SV055, 075iV5-4DC

■ SV110, 150, 185, 220iV5-4DC

■ SV300, 370,450,550,750,900,1100,1320,1600,2200iV5-4DC

■ SV2800, 3150, 3750, 5000iV5-4DC

3.3.2 Power circuit terminal description

(1) AC power input type

Name	Function	Description
R, S, T	3 Phase input power supply	Connected to 3 phase input power supply
U, V, W	Inverter Output	Connected to 3 phase induction motor
G	Grounding	Used for inverter frame earth
B1, B2	Braking Resistor	Connected to braking resistor
P1(+), P2(+)	DC Reator and DB Unit	Used for DC Reactor, DB Unit and DC link common connection
P(+)	DC Link common	DC link common connection
N(-)	DB Unit	Used for DB Unit and DC link common connection

(2) DC power input type

Name	Function	Description
P(+), N(-)	DC input power	Connected to DC input power source Connected from DC power suupy (PWM converter) within max. 30m
U, V, W	Inverter Output	Connected to 3-phase induction motor
G	Grounding	Used for inverter frame earth
FAN1, FAN2	Internal cooling fan and MC drive power source	Connected to single-phase 220V AC power source

Note 1) In case of 500 kW product, it is applied at AC input type.

3.3.3 Cautions to be required for wiring to power circuit terminal

(1) Connect terminals (R, S and T) to 3 phase input power supply after checking inverter nameplate attached on the inverter. Never connect terminals (U, V and W) to 3 phase input power supply. It results in lethal damage to the inverter.

Input Voltage

(2) Never connect the phase advancing capacitor to the inverter output. If already installed, remove the phase advancing capacitor clearly.

(3) Cable between inverter output and motor should be less than 30 m long. If cable gets long, surge voltage appears across motor terminals depending on the cable parameters. Especially, in 400 V class motor case, insulation withstanding voltage may be decreased. Use an insulation-enforced motor when 400 V class motor is used.

Distance between inverter and motor	Up to 50m	Up to 100 m	Over 100m
Permitted Carrier Frequency	Below 10 kHz	Below 5 kHz	Below 2.5 kHz l

(In case of below 3.7 kW , use the cable of output within 100 m)
(4) Crimp terminal with insulation cap should be used for the input power supply and the motor.
(5) After finishing wiring, be certain to remove all the wire or cable scraps inside the inverter.
(6) Use the shield cable or twist-paired wire for control circuit terminal. Do not put them into the same wiring duct for the power terminal.
(7) When wiring is changed after operating the inverter, be sure to check LCD window on the keypad or charge lamp is turned off. Capacitors inside inverter are charged with high voltage and it may result in lethal injury.
(8) Below 22 kW inverter, B 1 and B2 on the power terminal should not be connected to anything else other than DB resistors.

3.3.4 Main power circuit wire sizes and grounding wire size

(1) Main Power Circuit Wire Sizes

If wiring for the main power terminal is not performed properly, it may cause severe damage to inverter or lethal injury to inverter operator.
(Standards of IEC 60227-3 or UL508C)

Inverter Capacity		Wire Size			
		mm ${ }^{2}$		AWG or kcmil	
		R, S, T	U, V, W	R, S, T	U, V, W
O-무	2.2 kW	2.5	2.5	12	12
	3.7 kW	4	4	10	10
	5.5 kW	6	6	8	8
	7.5 kW	10	10	6	6
	11 kW	16	16	4	4
	15 kW	25	25	3	3
	18.5 kW	35	35	2	2
	22 kW	35	35	2	2
	30 kW	50	50	1/0	1/0
	37 kW	70	70	2/0	2/0
৪	2.2/3.7 kW	2.5	2.5	12	12
	5.5 kW	4	4	10	10
	7.5 kW	4	4	10	10
	11 kW	6	6	8	8
	15 kW	10	10	6	6
	18.5 kW	16	16	4	4
	22 kW	16	16	4	4
	30 kW	35	25	3	3
	37 kW	25	25	3	3
	45 kW	50	35	2	2
	55 kW	50	50	1	1
	75 kW	70	70	2/0	2/0
	90 kW	120	120	4/0	4/0
	110 kW	150	150	300	300
	132 kW	185	185	350	350

3. Installation and Wiring

Inverter Capacity	Wire Size			
	mm ${ }^{2}$		AWG or kcmil	
	R, S, T	U, V, W	R, S, T	U, V, w
160 kW	240	240	500	500
220 kW	400	400	800	800
280 kW	2×240	2×240	2×500	2×500
315 kW	2×240	2×240	2×500	2×500
375 kW	2×300	2×300	2×600	2×600
500 kW	2×400	2×400	2×800	2×800

1) Apply the rated torque to terminal screws. Loose screws can cause of short circuit or malfunction.
Tightening the screws too much can damage the terminals and cause a short circuit or malfunction.
(2) Grounding Wire Size and Caution to be taken

- Be sure to ground the motor and the inverter to prevent electric shock injury. (200V class: ground impedance 100Ω, 400 V class: ground impedance 10 2)
- Connect the inverter ground to the ground terminal exclusively used for the inverter. Do not use the case of inverter of sash screw for ground.
- It is strongly recommended that as thick a grounding wire as possible be used and wire be short.

Motor Capacity	Ground wire size(mm²)	
	200V Class	400V Class
$2.2 \sim 3.7 \mathrm{~kW}$	4	2.5
$5.5 \sim 7.5 \mathrm{~kW}$	6	4
$11 \sim 15 \mathrm{~kW}$	16	10
$18.5 \sim 22 \mathrm{~kW}$	25	16
$30 \sim 37 \mathrm{~kW}$	25	16
$45 \sim 75 \mathrm{~kW}$	-	25
$90 \sim 132 \mathrm{~kW}$	-	35
$160 \sim 220 \mathrm{~kW}$	-	95
$280 \sim 315 \mathrm{~kW}$	-	185
$375 \sim 500 \mathrm{~kW}$	-	240

3.3.5 Wiring DC Reactor (Option) (AC power input: 30kW and higher)

3.3.6 Wiring DB Unit (Option) (AC power input: 30kW and higher)

3.3.7 Wiring guide when using both of DC reactor (Option) and DB Unit(option) (AC power input: 30kW and higher)

3.4 Control Board and Terminal

3.4.1 Control circuit terminal arrangement

- SV022~5000iV5

3.4.2 Control circuit terminal function description

Item	Name	Function	Description
	FX RX	Forward Run/Stop Command Reverse Run/Stop Command	-Forward/Reverse RUN Command is ON when closed to CM in NPN input mode. \bullet Motor stops when FX/RX is ON or OFF at the same time.
	BX	Emergency Stop	- ON when closed to CM in NPN input mode, Free-run to Stop and deceleration to stop. It does not trigger fault alarm signal.
	RST	Fault Reset	- Resets when fault condition is cancelled.
	$\begin{gathered} \text { P1 } \\ \text { (MM0) } \\ \hline \end{gathered}$	Multi-function input contact	- A function can be selected among 46 different functions as shown below. (Multi-step speed 1 / 2 / 3, Jog, MOP Up / Down / Save / Clear, Analog Hold, Main Drive, 2nd function, Accel./Decel. Time selection, 3 Wire RUN, External trip (B contact), Power failure prevention, Reverse rotation prevention, Process PI Disable, Timer input, Soft start cancel, ASR P/PI Gain switch-over, ASR P/PI switch-over, Flux command value switch-over, Pre-excitation, Speed/Torque control, Torque limit ON/Off, Torque bias ON/Off, Battery operation On/Off, Low voltage trip detection prevention, etc.)
	$\begin{gathered} \text { P2 } \\ \text { (MM1) } \end{gathered}$		
	$\begin{gathered} \text { P3 } \\ \text { (ATO) } \\ \hline \end{gathered}$		
	$\begin{gathered} \mathrm{P} 4 \\ (\mathrm{FHM}) \\ \hline \end{gathered}$		
	$\begin{gathered} \text { P5 } \\ \text { (BAT) } \\ \hline \end{gathered}$		
	$\begin{gathered} \text { P6 } \\ \text { (BRC) } \end{gathered}$		
	$\begin{gathered} \text { P7 } \\ \text { (MCC) } \\ \hline \end{gathered}$		
	CM	COMMON	- In NPN input mode, it turns On when each contact is closed to CM terminal. - In PNP input mode, it turns On when each contact is closed to external 24 V input.
	VREF	Power supply for analog setting	- Reference voltage by variable resistor (+ 10V) : $10 \mathrm{k} \Omega$
	Al1	Voltage/ Current Signal Input	\bullet Voltage input $(-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}$, $10 \rightarrow 0 \mathrm{~V}$)

Item	Name	Function	Description
	Al2 Al3/ Them	Voltage input Motor NTC Input	- Motor NTC is selectable function. - Jumper setting in Voltage Input: Jumper set as default) \rightarrow Al1, Al2: Jumper set on left side, Al3: Switch set on left("V") side - Jumper setting in Current Input \rightarrow Al1, Al2: Jumper set on right side -S/W setting in motor NTC (Higen motor) \rightarrow AI3: switch set on right ("Them") side. -Selectable 17 functions as following: (Speed, Process PID controller, Process PI controller feedback, Draw, Torque, Magnetic flux, Torque bias, Torque limit, Motor NTC, etc.)
	5G	COMMON	-COMMON terminal for Analog input
	PE	P/S (Power supply) for Pulse Encoder	+5V Line Drive Power
	GE		OV
	A+	Encoder A-phase signal	- A, B signal for Line Drive Type Encoder. - Set the JP2 switch at "P5" on I/O PCB and set the JP4 switch to "LD" for the use of Line Drive. ※ Jumper set as default
	A-		
	B+	Encoder B-phase signal	
	B-		
	PE	P/S for Open Collector	+15V Open Collector Power
	GE		OV
	PA	Encoder A-phase signal	- A, B signal for Complementary or Open Collector Type Encoder. - Set the JP2 switch at "P15" on I/O PCB and set the JP4 switch to "OC" for the use of Open Collector.
	PB	Encoder B-phase signal	
	$\begin{gathered} Z_{+} \\ (\mathrm{PZ}) \end{gathered}$	Encoder Z-phase signal	Caution) The usages of Z-phase signal are as follows and its functions will be available soon. - Use for Z-phase pulse provided encoders. - Z+ and Z- signals are used for Line Drive type, so set the JP5 switch to "LD". $\bullet P Z$ signal is used for Open Collector type, so set the JP5 switch to "OC".
	Z-		

tem	Name	Function	Description
	RA	Encoder signal output : A-phase	Encoder A, B phase signal output - Open Collector Type Note1)
	GE	Output Common	
	RB	Encoder signal output : B-phase	
	GE	Output Common	
	AO1	Analog Output 1	$\bullet-10 \mathrm{~V} \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}$ output - Selectable among 39 functions (Analog input value, Pre Ramp Reference, Post ramp reference, ASR Input Reference, Motor Rotating Speed, Speed Deviation, ASR Output, Torque bias, Positive Trq Limit, Negative Trq Limit, Regeneration Trq Limit, Torque Reference, Torque current ref., Torque current, Flux reference, Flux Current ref. , Flux Current, ACR output of axis Q, ACR output of axis D, Voltage reference of axis D, Voltage reference of axis Q, Output current, Output voltage, Output power, DC LINK voltage, Process PI reference, Process PI Feedback, Process PI output, Motor temperature, Motor temperature, Inverter temperature, Inverter i2t)
	AO2	Analog Output 2	
	5G	COMMON	\bullet COMMON terminal for Analog Output
	1A	Multi-function relay output 1 (A Contact)	- Selectable among the following 22 functions; (Inverter ready, Zero speed detection, Seed detection, Speed detection (ABS), Speed arrival, Timer out, Low voltage alarm, run, regenerating, Motor overheat warning, Inverter overheat warning, Speed agree, Torque detection, Torque limit detection, Overload warning, Stop, Steady run, Brake output, WEB brake, UP to speed, False core, MC output)
	1B		
	2A	Multi-function relay output 2 (A Contact)	
	2B		
	OC1	Open Collector Output	
	EG		
	30A	Fault alarm A contact	- Outputs when fault occurs. - Deactivated in BX condition.

Item	Name	Function	Description
	30B	Fault alarm B contact	
	30C	COMMON	- COMMON for A, B
$\begin{aligned} & \frac{1}{0} \\ & \\ & \end{aligned}$	JP1	Encoder Inputpulse Type	LD (Line Drive) / OC (Open Collector or Complementary)
	JP2	Encoder Power Supply	DC +5V / +12V / +15V selectable usages
	JP4	PNP/NPN Input mode	PNP/NPN contact input mode selection

Note)

1) Example wiring of Encoder output

- Additional Functions of Extended I/O(EXTN _ I/O) Control board terminal

Item	Name	Function	Description
	Al1	Voltage Input Current Input	- Extended I/O(EXTN_//O) board is added analog input AI4, AI5. - How to use terminal Pin : - Voltage Input : Al1, Al2, Al3, Al4, AI5 - Current Input : AI1, Al2, AI3, Al4 - Motro NTC input : Al5
	Al2		
	Al3		
	Al4		
	Al5/ Them	Voltage Input Motor NTC Input	Note) Jumper setting and functions are explained at I/O control terminal description.
	5G	COMMON	COMMON terminal for Analog Input

3.4.3 Wiring the control circuit terminal

(1) Shield wire or vinyl insulated wire are highly recommended to be used for the control circuit terminal.
(2) Be sure to use twisted shield wire if wiring distance gets too long.
(3) Wire should be at least as thick as $0.2 \sim 0.8 \mathrm{~mm}^{2}(18 \sim 26$ AWG).
(4) Screwing torque limit should be kept under 5.2 lb -in.
(5) Maximum interrupting capacity of auxiliary contact 1,2 is of AC $250 \mathrm{~V} / 1 \mathrm{~A}, \mathrm{DC}$ $30 \mathrm{~V} / 1 \mathrm{~A}$.
(6) Maximum interrupting capacity of fault alarm relay A, B contact is of $A C$ $250 \mathrm{~V} / 1 \mathrm{~A}$, DC 30V/1A.
(7) Open collector output 1, 2, 3 and encoder output can be used below maximum of $24 \mathrm{~V} / 100 \mathrm{~mA}$.
(8) Wires for the control circuit terminal should be separated from ones for the power circuit terminal, if possible and in case wires for both control circuit terminal and the power circuit one cross each other, they should be crossed at right angles $\left(90^{\circ}\right)$.

3.4.4 Caution on wiring pulse encoder

1) Check-up of the coupling and alignment of motor and encoder shaft
(1) Be sure to mount the pulse encoder at the location where it rotates at the same speed as the motor does.
(e.g. on the opposite shaft of load side of motor, on the opposite shaft of motor at traction machine)
(2) In case there is speed slip between the motor shaft and encoder shaft, the motor may not start or it causes mechanical vibration.
(3) Poor alignment of motor and encoder shaft results in torque ripple and causes mechanical vibration which has the same frequency as the motor speed at the constant speed region.
2) Wiring the pulse encoder
(1) Be sure to use twist paired shield wire and ground shield wire to screw for earth on the I/O PCB.
(2) Signal wires should be separated from the power lines, if possible.

Electromagnetic noise may affect the pulse encoder output signals.

3.4.5 Encodder wiring and switch setting method

 (+15V Complementary / Open Collector Type)

3.4.6 Encoder wiring and switch setting method (+5V Line Drive)

※ Jumper set as default

[^0]
3.4.7 Analog input jumper setting (Voltage/Current/Motor NTC Input) and PNP/NPN input mode switch setting

※ Jumper set as default : Voltage Input (Left)

- Guaranteed PNP type input voltage (external DC 24V): On voltage (DC 19~25.2 V)/ Off voltage (DC 7V or less)

1.
 CAUTION

- NEVER change the jumper setting during inverter run. Otherwise, it may cause inverter trip, adversely affecting the entire system.
- Motor NTC input for Analog Input 3 (AI3) is ONLY available when OTIS Motor is connected.
If user use a motor other than Higen motor with different NTC specification and use this function, it will lead to motor overheat and damage to the motor.
- Do not change the setting of PNP/NPN input switch during inverter operation. It can influence to the system since contact input is changed. Set the switch correctly before inverter operation.

3.5 Terminal of the Auxiliary Power Supply

3.5.1 The position of the terminal

- SV055 ~ 075iV5-4(Press) (for AC products)

■ SV110 ~ 750iV5(Press) (for AC/DC products)

■ SV055 ~ 075iV5-4(Mold)

■ SV110 ~ 220iV5-4(Mold)
■ SV900 ~ 2200iV5(Press) (for AC/DC products)

SV2800 ~ 5000iV5(Press) (for AC/DC products)

3.5.2 Function description of auxiliary terminal block

Symbol	Terminal Name	Terminal Description	Input Power
AC1, C2	Auxiliary power input	Inputs single-phase AC input source	$220 \mathrm{~V}(-10 \sim+10 \%)$,
$50 / 60 \mathrm{~Hz}$			

3.5.3 Wiring and Precaution of auxiliary terminal block

(1) Connect the auxiliary power supply through insulated transformer separated with main power supply.
(2) User polyvinyl chloride insulated wire for auxiliary power cable.
(3) Use the cable above $0.5 \mathrm{~mm}^{2}$ (20 AWG).

Chapter 4 - Trial Operation

4.1 Keypad Operation

LCD Keypad can display up to 32 alphanumeric characters and monitor or set parameter values to operate the inverter and the motor properly. As follows are keypad view and explanation on each key/LED on the keypad.
<Keypad View>

Items	Name	Function	Description
Key	MODE	Mode	Enables to move to the other groups (Initial Screen \rightarrow DIO \rightarrow PAR \rightarrow FUN...) and go to the first code in the same group.
	PROG	Program	Enables to modify setting values.
	ENT	Enter	Enables to move to the other groups (Initial Screen \leftarrow DIO $\leftarrow \mathrm{PAR} \leftarrow \mathrm{FUN} . .$.$) and save the changed setting values.$
	((Up)	Up	Moves to the next code or increments setting values.
	$\boldsymbol{\nabla}$ (Down)	Down,	Moves to the next code or decrements setting values.
	SHIFT/ESC	Shift/ESC	Acts as Shift key in a setting mode and as ESC key in other mode.
	REV	Reverse RUN	Reverse RUN command is enabled.
	STOP/ RESET	Stop/Reset	Stop key during inverter operation. Resets fault when inverter returns to normal after fault has occurred.
	FWD	Forward RUN	Forward RUN command is enabled.
LED	(REV)	Reverse RUN	Lit when motor is in reverse revolution. Blinks on acceleration/deceleration, lit in a constant speed.
	(STOP/RESET)	Stop/Reset	Lit when the motor stops. Blinks when fault has occurred.
	(FWD)	Forward RUN	Lit when motor is in forward revolution. Blinks on acceleration/deceleration, lit in a constant speed.

4.2 Keypad LCD Display

4.2.1 LCD Start-up display

No.	Function	Description
1	Motor speed	Real motor speed in RPM (Revolution Per Minute)
2		SPD : Speed control mode TRQ : Torque control mode
	Mode	WEB : WEB control mode SLS : Sensorless control mode BX : Emergency stop
		BAT : Battery-operated mode
	Generating torque	Displays \% ratio to the rated torque of a motor.
4	Output current	Inverter output current in RMS

4.2.2 Group display

No.	Function	Description
1	Parameter group	Displays the name of each parameter group. There are DIS, DIO, PAR, FUN, CON, AIO, USR and 2d
2	Code name	Displays a code name to be set.
3	Code Number	Displays a code number to be set.
4	Code data and unit	Displays a code data and a code unit to be set.

4.3 Setting of Parameter Values

In case inverter is to be in use using a keypad, proper parameter values can be set depending on the load and operation condition.
First, move on to the code in a group where is intended to change parameter value. Cursor (■) blinks by pressing [PROG] key. Parameter value can be set using (SHIFT/ESC)], [$\boldsymbol{\Delta}(\mathrm{Up})]$ and $[\mathbf{\nabla}$ (Down)] keys and then can be saved by entering [ENT] key.

Note) In some cases, data will not be changed for the following two reasons.

* Some data cannot be changed during inverter operation.
* Parameter data lock function is set. (PAR_04 [Parameter Lock] is enabled)

Example) In case the 1st acceleration time is to be changed from 10(sec) to 15(sec), it can be set as shown below.

	0.0 rpm	SPD
Tq	0.0%	0.0 A

FUN	
00	Jump code

FUN	Jump code
00	40

FUN Acc Time-1
$40 \quad 10.00 \mathrm{sec}$

FUN	Acc Time-1
40	$\square 10.00 \mathrm{sec}$

FUN	Acc Time -1
40	10.00 sec

FUN	Acc Time-1
40	15.00 sec

FUN	Acc Time-1
40	15.00 sec

Move to FUN Group by using [MODE] Key

Press [PROG] Key
\rightarrow Enter 40 by [(SHIFT/ESC)], [$\mathbf{\Delta}(\mathrm{Up})]$, [$\mathbf{\nabla}$ (Down)] Key \rightarrow [ENT]

Acc time 1 is settable.

Press [PROG] Key.
Setting Mode(Cursor(■) appears and blinks)
Move the Cursor(■) to the position to be changed using [(SHIFT/ESC)] key.

Set the data using [$\mathbf{\Delta}(\mathrm{Up})$], $\mathbf{\nabla}($ Down $)$ key.

Save the changed data by pressing [ENT] key. (Cursor disappears.)

4. Trial Operation

4.4 Data Groups

SV-iV5 series inverters use LCD keypad for user's convenience. Data groups are divided into 12 groups for easy access depending on the inverter application.

Name	LCD keypad (on the upper leff)	Description
Display group	DIS	Motor speed, Motor control mode, Generating torque, Output current, User selection display, Process PID output/reference/feed-back value, Fault display, User group display setting and so on.
Digital I/O group	DIO	Digital Input /Output parameters and so on.
Parameter group	PAR	Parameter initialization, Parameter read / write / lock /password, Constant which is motor related, Auto-tuning and so on.
Function group	FUN	Operating frequency, Operation mode, Stop mode, Acceleration /deceleration time and pattern, Carrier frequency, Electronic thermal selection and so on.
Control group	CON	Control mode, ASR PI gain, Process PID gain, Draw control setting, Droop control related constants, Torque control related constants, V/F control related constants and so on.
Exterior group	EXT	Built-in 485 communication parameter and communication parameter when the exterior option board is installed.
Analog I/O group	AIO	Analog Input /Output Parameter and so on.
User group	USR	User macro function, macro function save, macro function recall
$2^{\text {nd }}$ function group	$2^{\text {nd }}$ 2)	$2^{\text {nd }}$ motor control mode, $2^{\text {nd }}$ motor accel./decel. time, $2^{\text {nd }}$ motor parameters and so on.
Elevator group	$E / L^{2)}$	It is displayed when EL_I/O option board is installed, Elevator operation function setting parameter and so on.
Synchronous group	SYNC ${ }^{2)}$	It is displayed when SYNC_I/O option board is installed. Synchronous operation function setting parameter and so on.
WEB group	WEB ${ }^{2)}$	Diameter and Tension control setting parameter while WEB control.
Sensorless control group	SLS ${ }^{2)}$	Open Loop control setting parameter which is not using the position sensor as encoder, resolver and, etc..

1) Group name: It is displayed when option board is installed, Refer to the option manual for more details.
2) It is displayed when the option board is installed and CON (control) mode is changed to it. Refer to the user manual related to the option board.

- Group transfer in the keypad

For transfer to another group, [MODE] key is used and $\boldsymbol{\Delta}$ (Up), $\boldsymbol{\nabla}$ (Down) key is used to move up and down in the same group.

- In these group transfers, User Group, $2^{\text {nd }}$ Group, AIO Group, EXT group and WEB Group are omitted.

4. Trial Operation

4.5 Auto-Tuning

Parameters such as stator resistance (R_{s}), stator leakage inductance (sL), flux current (IF), rotor time constant (T_{r}) and stator self-inductance (Ls) are indispensable for obtaining an excellent control performance in the vector control and are automatically measured and set using auto-tuning function.

- SV-iV5 features two types of Auto-tuning:

1) Rotational Auto Tuning
2) Standstill Auto Tuning

4.5.1 Motor and encoder parameter setting for auto-tuning

The Motor capacity, Basic speed, Rating voltage, Pole number, Efficiency, Rating slip and Rating current on the nameplate of the motor and the pulse number of encoder should be set before operation.

LCD Display	Description
PAR \downarrow Motor select 07	- Enter the motor capacity. - Basic capacity is same with Inverter capacity - Enter directly in the PAR_08 after selecting "User Define" if there is no Motor capacity.
PAR 88 UserMotorSel	Enter the motor capacity directly at PAR_08 incase that select "User Define" at PAR_07.
	- Set the pulse numbers per revolution of pulse encoder coupled to the motor shaft.
PAR Base Speed 17 rpm	- Set the motor base speed. Note) It is not rating current of name plate. Base Speed = 120 X Base Frequency/ Pole number
PAR 18	- Set the rated voltage of the motor. (Voltage value on the name plate)
PAR Pole number 19 []	- Set the number of poles of the motor.
	- Set the efficiency of the motor. If you cannot find the efficiency in name plate, Do not set the Efficiency.
PAR Rated-Slip 21 rpm	Set the rated slip speed of the motor. (Rated slip=synchronous speed-rated speed)
PAR Rated-Curr 22 A	- Set the rated current of the motor.

4.5.2 Rotational auto-tuning

1) Precautions

CAUTION

Be sure to remove the load connected to the motor shaft before performing rotational auto-tuning. Otherwise, it may lead to damage to the motor or bodily injury. DB resistor should be installed because the inverter repeats abrupt Accel/Decel many times to find the motor constant (Tr) during tuning.
2) Rotational Auto-tuning procedure

LCD Display	Description	Tuning Time
PAR AutoTuneType 24 Rotational	Set it to " Rotational ".	-
PAR Auto tuning 25 ALL1	Auto-tuning starts when it is set to " ALL1".	-
PAR Auto tuning 25 Enc	Checks whether the encoder wiring is properly done and an encoder works well by rotating the motor at 1500 rpm in forward direction.	$30 \sim 35(\mathrm{Sec})$
PAR Auto tuning 25 Rs Tuning	Stator resistance (Rs) is measured without rotating the motor.	$10 \sim 20$ (Sec)
PAR \downarrow Auto tuning 25 sL Tuning	The leakage inductance (sL) of the motor is measured without rotating the motor.	5 ~ 20(Sec)
$\begin{array}{ll}\text { PAR Auto tuning } \\ 25 & \text { IF Tuning }\end{array}$	The flux current (IF) is measured by rotating the motor at 1500 rpm .	$30 \sim 60$ (Sec)
PAR Auto tuning 25 Ls Tuning	Stator self-inductance (Ls) is measured by rotating the motor at 1500 rpm .	$50 \sim 60$ (Sec)

LCD Display	Description	Tuning Time
$\begin{array}{\|cc} \hline \text { PAR } & \text { Auto tuning } \\ 25 & \operatorname{Tr} \text { Tuning } \end{array}$	Accel/Decel is performed repeatedly to find motor constant (Tr) so that DB Resistor should be connected before starting tuning. Otherwise, "Over Voltage " trip will occur.	20~60(Sec)
PAR 25 Auto tuning None PAR Auto tuning 25 [][] Error	When auto-tuning is complete successfully, "None" is displayed. If error occurs during auto-tuning, "[][] Error" is displayed. In this case, verify motor parameters and encoder setting is done properly and redo the autotuning. If the problem persists, contact LS representative.	Total $3 \sim 5$ (Min.) is required

- FWD/REV LED on keypad will blink during Auto-tuning.
- If setting PAR_24 (Auto tuning) to " ALL2 ", all procedure is same as "ALL1" except Encoder Testing will be skipped.
- Motor constants of each can be selected and separately tuned. (Encoder Test, Rs Tuning, Lsigma, Flux Curr, Ls Tuning, Tr Tuning)
- If encoder phase (A, B) or inverter output wiring is switched during Auto-tuning, " Enc AB Chgd " message will be displayed. In this case, changing PAR_11 (Enc Dir Set) setting from "A Phase Lead" to "B Phase Lead" (or oppositely) will erase the need for changing the wiring.

4.5.3 Standstill auto tuning

1) Precaution

Be sure to lock the motor shaft using magnetic brake.

2) StandStill Type Auto-tuning procedure

LCD Display	Description	Tuning Time
PAR AutoTuneType 24 Standstill	Set the auto-tuning type to "Standstill".	-
PAR Auto tuning 25 ALL1	Auto-tuning starts if ALL1 is set.	-
PAR Auto tuning 25 Rs Tuning	Stator resistance $\left(R_{s}\right)$ is measured without rotating the motor.	20-30 Sec
PAR Auto tuning 25 sL Tuning	The leakage inductance (sL) of the motor is measured without rotating the motor.	90-150 Sec
PAR Auto tuning 25 $\mathrm{If} / \mathrm{Tr} / \mathrm{Ls}$	Flux current (IF), rotor time constant (T_{r}) and stator selfinductance (Ls) is measured simultaneously without rotating the motor.	40-70 Sec
PAR Auto tuning 25 None PAR Auto tuning 25	When auto-tuning is complete successfully, "None" is displayed. If error occurs during auto-tuning, "[][] Error" is displayed. In this case, verify motor parameters and encoder setting is done properly and redo the auto-tuning. If the problem persists, contact LS representative.	Total : 3-5 minutes

- FWD/REV LED on keypad will blink during Auto-tuning.
- Motor constants of each can be selected and separately tuned.
(Rs Tuning, Lsigma, If/Tr/Ls Tune)

4.6 Pulse Encoder Check

4.6.1 The definition of forward rotation

Forward rotation is of counter-clockwise from the side view of motor shaft.

4.6.2 Forward rotation check

Be sure to check if positive(+) speed is displayed when inverter power is on and rotates the motor in the forward direction.

+[][][]$[\mathrm{rpm}$	SPD
Tq	$\%$

4.6.3 Reverse rotation check

Be sure to check if negative(-) speed is displayed when inverter power is on and rotates the motor in the reverse direction.

- $[1][][\mathrm{rpm}$	SPD	
Tq	$\%$	A

- If speed is displayed 0.0 rpm or unchanged or speed polarity is reversed, check if wiring for the pulse encoder is properly done.
- In case the motor shaft cannot be rotated with hands, refer to next chapter.

4.7 Operation by Keypad

4.7.1 Parameter setting for keypad operation to rotate the motor at 100 rpm

FUN 1 Run/Stop Src 01 Keypad	(1) RUN/STOP command setting by keypad
$\begin{array}{\|lc} \hline \text { FUN } & \text { Spd Ref Sel } \\ 02 & \text { Keypad1 } \end{array}$	(2) Operating speed reference setting by keypad
$\begin{array}{ll} \hline \text { FUN } \quad \text { Speed } 0 \\ 12 & 100.0 \mathrm{rpm} \end{array}$	(3) Operating speed setting

4.7.2 Forward / Reverse Run (FWD / REV)

(1) Low speed operation

- Check if motor speed is +100 rpm in the start-up LCD screen after pressing [FWD] key.

$+100.0 \mathrm{rpm}$		SPD
Tq	$\%$	A

- Check if motor speed is $\mathbf{- 1 0 0} \mathrm{rpm}$ in the start-up LCD screen after pressing [REV] key.

-100.0rpm		SPD
Tq	$\%$	A

- The following table describes the cases of abnormal rotation due to the incorrect wiring of encoder and/or motor.

Command	Rotating direction	Speed display	Torque display	Wiring Status	
FWD	Forward	+100.0(rpm)	Below +10\%	Normal	
REV	Reverse	-100.0(rpm)	Below -10\%		
FWD	Forward	-10 ~ -40(rpm)	150\%(Torque Limit)	Encoder wiring reversed	¢
REV	Reverse	$10 \sim 40$ (rpm)	-150% (Torque Limit)		
FWD	Reverse	-10~-40(rpm)	150\%(Torque Limit)	Phase V and W wiring reversed	
REV	Forward	10~40(rpm)	-150% (Torque Limit)		
FWD	Reverse	+100.0(rpm)	Below +10\%	Encoder and Motor all reversed	¢
REV	Forward	-100.0(rpm)	Below -10\%		

- If A and B phase are reversed, be sure to replace A with B phase wire after checking the pulse encoder wiring. Or user does not need to change wiring if PAR_11(Enc Dir Set) setting value is changed from "A Phase Lead" to "B Phase Lead".
- If Motor wires are reversed, be sure to replace V with W phase wire after checking the motor output wiring.
- Torque display is on the basis of the no load operation.

(2) High Speed Operation

Change the value of FUN_12 to 1000.0(rpm) and Check the display LCD by pressing [FWD], [REV] keys shown below.

- When pressing [FWD] key ;

	$+1000.0 r p m$	SPD
Tq	$\%$	A

- When pressing [REV] key ;

	-1000.0rpm	SPD
Tq	$\%$	A

4.8 Operation by Control Terminal

4.8.1 Parameter setting

$\begin{array}{ll} \text { FUN } & \text { Run/Stop Src } \\ 01 & \text { Terminal } 1 \end{array}$	(1) Setting RUN/STOP command by terminal
$\begin{aligned} & \text { FUN Spd Ref Sel } \\ & 02 \quad \text { Analog } \end{aligned}$	(2) Setting Speed reference by Analog
$\begin{array}{ll} \text { FUN } & \text { Max Speed } \\ 04 & 1800.0 \mathrm{rpm} \end{array}$	(3) Setting Max. motor speed
AIO Ai1 Define 01 Speed Ref	(4) $\mathrm{Ai1}$ (Analog input terminal) define
AIO Ai1 Source 02	(5) Ai1 (Analog input terminal) Source define : Select $\begin{aligned} & (-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}, \\ & 0 \rightarrow 20 \mathrm{~mA}, 20 \rightarrow 0 \mathrm{~mA}) \end{aligned}$

4.8.2 Wiring example when issuing speed reference using speed potentiometer on Al1 terminal

Connect the potentiometer to VREF, Al1 and 5G as shown below.

4.8.3 Adjusting Ai1 Gain and Bias (example of analog input Ai1 setting)

(1) Out Y2(Gain) Adjustment of Analog input

- Apply 10 V or 20 mA between Al1 ~ 5G
(for setting by potentiometer, adjust it to Max).
- Adjust the other multi analog input terminals in same manner.

Key Handling	Loader Display	Description
	AIO Ai1 Out Y2 06 100.00%	Initial LCD display
PROG	AIO Ai1 98.00% 06 Gain $\quad 100.00 \%$	Pressing [PROG] key, shows in upper side the percent of input to output and in low side the gain value be set presently.
-	AIO Ai1 100.00% 06 Gain $\quad 102.00 \%$	If you try to adjust the gain to show 100.00%, Press [$\mathbf{\Delta}(\mathrm{Up})$] key repeatedly and set to be 102.00\%.
ENT	AIO Ai1 Out Y2 06 102.00%	After adjusting Gain, if you enter [ENT] key, the adjusted gain value is saved.

(2) Out Y1(Bias) Adjustment of Analog input

- Apply OV or OmA between Al1 ~ 5G
(for setting by potentiometer, adjust it to Min).
- Adjust the other multi analog input terminals in same manner.

Key Handling	Loader Display	Description
	AIO 04 Ai1 Out Y1	Initial LCD display
PROG	AIO Ai1 0.18% 04 Bias 0.00%	Pressing [PROG] key, shows in upper side the percent of input to output and in low side the Bias value be set presently.
-	AIO Ai1 0.00% 04 Bias 0.18%	If you try to adjust the Bias to show 0.00%, Press [$\mathbf{\Delta}(\mathrm{Up})$] key repeatedly and set to be 0.00\%.
ENT	AIO Ai1 Out Y1 04 0.18%	After adjusting Bias, if you enter [ENT] key, the adjusted Bias value is saved.

4.8.4 FX / RX operation

1) FX Operation (Forward Run Command by Control Terminal)

(1) Apply OV between Al1 and 5G (for setting by potentiometer, adjust it to minimum value).
(2) Check the motor speed display in display group shows " +0.0 rpm " after connecting the terminals FX and CM.
(3) Increase Al1 voltage little by little and check the speed is increasing (for setting by potentiometer, turn the pot to maximum value smoothly).
(4) To stop the motor, disconnect the FX and CM terminal.

2) RX Operation (Reverse Run Command by Control Terminal)

(1) Apply OV between Al1 and 5G (for setting by potentiometer, adjust it to minimum value).
(2) Check the motor speed display in display group shows"-0.0rpm" after connecting the terminals RX and CM.
Increase Al1 voltage little by little and check the speed is increasing (for setting by potentiometer, turn the pot to maximum value smoothly).
(3) To stop the motor, disconnect the RX and CM terminal.
3) The cases of abnormal rotation due to the wrong wiring of encoder and/or motor during low speed (about 100rpm) operation by control terminal.

Command	Rotating direction	Speed display	Torque display	Wiring Status
FX	Forward	+100.0(rpm)	Below +10\%	Normal
RX	Reverse	-100.0(rpm)	Below -10\%	
FX	Forward	-10 ~ -40(rpm)	150\%(Torque Limit)	
RX	Reverse	$10 \sim 40$ (rpm)	-150% (Torque Limit)	
FX	Reverse	-10 ~ -40(rpm)	150\%(Torque Limit)	
RX	Forward	10 ~ 40(rpm)	-150\%(Torque Limit)	
FX	Reverse	+100.0(rpm)	Below +10\%	Encoder and Motor all reversed
RX	Forward	-100.0(rpm)	Below -10\%	

- If A and B phase are reversed, be sure to replace A with B phase wire after checking the pulse encoder wiring.
- If motor wires are reversed, be sure to replace V with W phase wire after checking the motor output wiring.
- It does not need to change wiring if user changes the setting value of PAR_11(Enc Dir Set) from "A Phase Lead" to "B Phase Lead".
- Torque display is on the basis of the no load operation.

5. Function Code Table

Chapter 5 - Function Code Table

* The number of page is for User's manual uploaded at LSIS website. You can download the User's manual which is described detailed function of parameter from website. (http://www.Isis.com)

5.1. Display Group (DIS_[][])

* • - mark of communication adrress indicates communication exclusion.
* Setting during Inverter operation (Yes : possible, No : impossible)

CODE No.	Comm. Addr.	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run ${ }^{1)}$
				RANGE	UNIT	DEFAULT	
DIS_00	-	Motor Speed/Control Mode OutputTorque/Output Current	$\begin{aligned} & 0.0 \\ & \text { Tq } \end{aligned}$	$\begin{aligned} & \text { rpm } \\ & 0.0 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SPD } \\ & 0.0 \mathrm{~A} \end{aligned}$	-	-
DIS_01	-	User Display 1	Ai1 Value		\%	PreRamp Ref	Yes
			Ai2 Value		\%		
			Ai3 Value		\%		
			Ai4 Value ${ }^{\text {1) }}$		\%		
			Ai5 Value ${ }^{1)}$		\%		
			PreRamp Ref		rpm		
			PostRamp Ref		rpm		
			ASR Inp Ref		rpm		
			Motor Speed		rpm		
			Motor SpdEst		rpm		
			Speed Dev		rpm		
			ASR Out		\%		
			Torque Bias		\%		
			PosTrq Limit		\%		
			NegTrq Limit		- \%		
			RegTrq Limit		\%		
			Torque Ref		\%		
			IqeRef		A		
			Iqe		A		
			Flux Ref		\%		
			Ide Ref		A		
			Ide		A		
			ACR_Q Out		V		
			ACR_D Out		V		
			VdeRef		V		
			VqeRef		V		
			Out Amps RMS		A		

5. Function Code Table

Note)

1) It is effective only when you use Extended I/O (EXTN_I/O).
2) It is displayed on WEB control Mode.

5.2. Digital DIO Group (DIO_[][])

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr	CODE NAME		$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DEFAULT			
						48 (PID ITerm Clr) ${ }^{11}$			
					49 (Taper Disable) ${ }^{11}$				
					50 (Stall Enable) ${ }^{11}$				
					51 (Boost Enable) ${ }^{11}$				
					52 (Quick Stop) ${ }^{11}$				
					53 (Jog Web Fwd) ${ }^{11}$				
					54 (Jog Web Rev) ${ }^{11}$				
					55 (Under Wind) ${ }^{17}$				
					56 (Unwinder) ${ }^{1)}$				
DIO_02	7202	Multi-function Input Terminal	P2 definition	P2 define	Same as the range of'DIO_1’	-	$\left\lvert\, \begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}\right.$	No	
DIO_03	7203		P3 definition	P3 define		-	$\left\lvert\, \begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}\right.$	No	
DIO_04	7204		P4 definition	P4 define		-	$\begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}$	No	
DIO_05	7205		P5 definition	P5 define		-	$\left\lvert\, \begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}\right.$	No	
DIO_06	7206		P6 definition	P6 define		-	$\begin{array}{\|c\|} 0 \\ \text { (Not Used) } \end{array}$	No	
DIO_07	7207		P7 definition	P7 define		-	$\begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}$	No	
DIO_08	-	Negative function of multi-function input terminal		Neg Func. In	0000000~1111111	bit	0000000	No	
DIO_09	7209	Multi-function Input LPF time constant		Terminal LPF	$0 \sim 2000$	-	5	Yes	
DIO_10	-	Negative function of multi-function auxiliary output terminal		Neg Func. Out	00000~ 11111	bit	00000	No	
DIO_41	7229		Definition of AX1	AX1 Define	0 (Not Used)	-	$\begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}$	Yes	
					1 (INV Ready)				
					2 (Zero Spd Det)				
					3 (Spd Det.)				
					4 (Spd $\operatorname{Det}(\mathrm{ABS})$)				
					5 (Spd Arrival)				
					6 (Timer Out)				
					7 (LV Warn)				
					8 (Run)				
					9 (Regenerating)				
					10 (Mot OH Warn)				
					11 (Inv OH Warn)				
					12 (Spd Agree)				

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
				13 (Trq Det.)			
				14 (Trq Lmt Det.)			
				15 (OverLoad)			
				16 (Stop)			
				17 (MC on/off)			
				18 (Steady)			
				19 (Brake Output)			
				25 (WEB Break) ${ }^{11}$			
				26 (Up To Spd) ${ }^{1)}$			
				27 (False Core) ${ }^{11}$			
DIO_42	722A	Definition of AX2	AX2 Define		-	$\begin{gathered} 0 \\ (\text { Not Used) } \end{gathered}$	Yes
DIO_43	722B	Definition of OC1	OC1 Define	'DIO_41'	-	0 (Not Used)	Yes
DIO_46	722E	Fault relay mode selection	Relay Mode	000 ~ 111	bit	011	Yes
DIO_47	722F	Zero speed detection level	ZSD Level	$0.0 \sim 480.0$	rpm	10.0	Yes
DIO_48	7230	Zero speed detection band	ZSD Band	$0.1 \sim 10.0$	\%	0.5	Yes
DIO_49	7231	Speed detection level	SD Level	$-3600 \sim 3600$	rpm	0	Yes
DIO_50	7232	Speed detection band	SD Band			0.5	Yes
DIO_51	7233	Speed arrival band	SA Band	$0.1 \sim 10.0$	\%	0.5	Yes
DIO_52	7234	Speed deviation band	SEQ Band			0.5	Yes
DIO_53	7235	Torque detection level	TD Level	0.0 ~ 250.0	\%	0.0	Yes
DIO_54	7236	Torque detection band	TD Band	$0.1 \sim 10.0$	\%	0.5	Yes
DIO_55	7237	Timer On delay time	TimerOn Dly	0.1 ~ 3600.0	sec	0.1	Yes
DIO_56	7238	Timer Off delay time	TimerOff Dly	0.1 ~ 3600.0	sec	0.1	Yes
DIO_57	7239	Warning level	OL Level	$30 \sim 250$	\%	150	Yes
DIO_58	723A	Warning time	OL Time	$0 \sim 30$	sec	10	Yes
DIO_59	723B	O	OLT Select	$\begin{aligned} & 0 \text { (No) } \\ & 1 \text { (Yes) } \end{aligned}$	-	1 (Yes)	Yes
DIO_60	723C	Trip level	OLT Level	$30 \sim 250$	\%	180	Yes
DIO_61	723D	Trip time	OLT Time	$0 \sim 60$	sec	60	Yes
DIO_62	723E	Inverter overheat warning temp.	IH Warn Temp	$50 \sim 85$	deg	75	Yes

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
DIO_63	723F	Inverter overheat warning band	IH Warn Band	$0 \sim 10$	deg	5	Yes
DIO_64	7240	Motor overheat warning temp.	MH Warn Temp	$75 \sim 130$	deg	120	Yes
DIO_65	7241	Motor overheat warning band	MH Warn Band	$0 \sim 10$	deg	5	Yes
DIO_67	7243	MC ON delay time ${ }^{4)}$	MC Timer Off	100~50000	msec	1000	No
DIO_68	7244	MC OFF delay time ${ }^{4)}$	MC Timer Off	100~50000	msec	1000	No
DIO_95	725F	Inverter station address	Inv Number	1~250		1	No
DIO_96	7260	485 BaudRate	485 BaudRate	0 (1200)	bps	9600	No
				1 (2400)			
				2 (4800)			
				3 (9600)			
				4 (19200)			
				5 (384000)			
DIO_97	7261	How to Run at Lost command	Lost Command	0 (None)	-	$\begin{gathered} 0 \\ \text { (None) } \end{gathered}$	No
				1 (FreeRun)			
				2 (Stop)			
DIO_98	7262	Decision time when communication command is lost. 4)	Comm. Timer	10~300	sec	10	No

Note)

1) Displayed WEB Control mode setting.
2) It can be set at $5.5 \sim 22 \mathrm{~kW}-2 / 4$ class.
3) It will be displayed as CON_02 sets to 'Synchro' when Synchronization option board is installed.
4) It will be displayed when the definition of multi-funtion output sets as 'MC On/Off'.
5) It will be displayed RS-485 communication option board is installed. Refer to the user manual for RS485/Modbus-RTU option board (iP5A/iV5).

5.3. Parameter group (PAR_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME		$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	SETTING DATA			Adjustment During Run	
				RANGE	UNT	DEFAULT			
PAR_00	-	Jum	mp for quick view		Jump Code	1 ~ 38	-	-	Yes
PAR_01	7301	Initia	alize parameters	Para. init	0 (No) 1 (All Groups) 2 (DIS) 3 (DIO) 4 (PAR) 5 (FUN) 6 (CON) 7 (EXT) 8 (AIO) 9 (USR) 10 (2ND) 11 (ELL) 12 (SYN) 13 (WEB) 14 (SLS)	-	0 (No)	No	
PAR_02	-	Read	ad parameters	Para. read	$0(\mathrm{No}) / 1$ (Yes)	-	0 (No)	No	
PAR_03	-	Write	e parameters	Para. write	$0(\mathrm{No}) / 1$ (Yes)	-	0 (No)	No	
PAR_04	-		ameter write ection	Para. lock	$0 \sim 255$	-	0	Yes	
PAR_05	-	Pas	sword	Password	$0 \sim 9999$	-	0	Yes	
PAR_07	7307		or capacity ction	Motor select	$0(2.2)$ $1(3.7)$ $2(5.5)$ $3(7.5)$ $4(11.0)$ $5(15.0)$ $6(18.5)$ $7(22.0)$ $8(30.0)$ $9(37.0)$ $10(45.0)$ $11(55.0)$ $12(75.0)$ $13(90.0)$ $14(110.0)$ $15(132.0)$ $16(160.0)$ $17(220.0)$ $18(280.0)$ $19(315.0)$ $20(375.0)$ 21 (User Define)	kW	-	No	
PAR_08	7308		or cap. selection USER	JserMotorSel	0.7 ~ 500.0	kW	5.5	No	
PAR_09	7309	Moto	or cooling type	Cooling Mtd	$\begin{aligned} & 0 \text { (Self-cool) } \\ & 1 \text { (Forced-cool) } \end{aligned}$	-	1 (Forced cool)	Yes	
PAR_10	730A		Pulse no.	Enc Pulse	$360 \sim 4096$	-	1024	No	
PAR_11	730B		Direction setting	Enc Dir Set	0 (A Phase Lead) 1 (B Phase Lead)	-	0 (A Phase Lead)	No	
PAR_12	730C		Error check enabling	Enc Err Chk	0 (No) / 1 (Yes)	-	1 (Yes)	No	
PAR_13	730D		LPF time constant	Enc LPF	$0 \sim 100$	ms	1	Yes	
PAR_14	730E		Error detection time	EncFaultime	$0.00 \sim 10.00$	sec	0.00	No	
PAR_15	730F		Error reference speed	EncFaultPerc	$0.0 \sim 50.0$	\%	25.0	No	

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME		$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	SETTING DATA			Adjustment During Run	
				RANGE	UNTT	DEFAULT			
PAR_17	7311	$\begin{aligned} & \text { 흐 } \\ & \stackrel{0}{0} \end{aligned}$	Base speed		Base Speed	100.0 ~ 3600.0	rpm	1800.0	No
PAR_18	7312		Rated voltage	Rated Volt	$120 \sim 560$	V	-	No	
PAR_19	7313		Number of poles	Pole number	$2 \sim 12$	-	4	Yes	
PAR_20	7314		Efficiency	Efficiency	$70.0 \sim 100.0$	\%	-	Yes	
PAR_21	7315		Rated slip	Rated-Slip	$10 \sim 250$	rpm	-	Yes	
PAR_22	7316		Rated current	Rated-Curr	$1.0 \sim 1000.0$	A	-	Yes	
PAR_23	7317	Input power source selection		AC In Volt	$\begin{aligned} & 170 \sim 230 \\ & 320 \sim 480 \end{aligned}$	V	-	No	
PAR_24	7318	Auto tuning type selection		Auto Tune Type	0 (Rotational) 1 (Standstill)	-	(Rotational)		
PAR_25	-	Auto tuning range setting ${ }^{2)}$		Auto Tuning	None ALL1/ALL2 Encoder Test Rs Tuning Lsigma Flux Curr Ls Tuning Tr Tuning Inertia Tuning ${ }^{4)}$	-	None	No	
PAR_26	731A	Tuning Torque		Tune Torque	$10.0 \sim 100.0$	\%	70	Yes	
PAR_27	731B	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	Motor flux current	Flux-Curr	70\% to 0.0 ~ PAR_22	A	-	Yes	
PAR_28	731C		Motor time constant	Tr	$30 \sim 3000$	ms	-	Yes	
PAR_29	731D		Leakage inductance	Ls	$0.00 \sim 500.00$	mH	-	Yes	
PAR_30	731E		Leakage coefficient	Lsigma	$0.00 \sim 100.00$	mH	-	Yes	
PAR_31	731F		Stator resistance	Rs	$0.000 \sim 5.000$	ohm	-	Yes	
PAR_34	7322	Encoder pulse multiplication ${ }^{3)}$		Enc Scale	x1/x16 / x32 / x64	-	x 1	No	
PAR_35	7323	Selection for motor inertia tuning		Inertia Tune	0 (No) / 1 (Yes)	-	0 (No)	No	
PAR_36	7324	Factor of motor inertia		Inertia	$0.001 \sim 60.000$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	-	Yes	
PAR_37	7325	Acc./Dec. time of Inertia tuning		J Spd Time	$0.500 \sim 10.000$	sec	0.500	No	
PAR_38	7326	Inertia LPF		Inertia LPF	$0.010 \sim 50.000$	ms	0.100	No	

'Note' is continued on next page.

5. Function Code Table

Note)

1) When PAR_07 is set to "User Define", PAR_08 will be displayed.
2) If PAR_24 (Auto-tuning type selection) is set to No. 1 "Standstill", the order of display in PAR_25 (Auto-tuning range setting) will be None \rightarrow ALL1 \rightarrow Rs Tuning \rightarrow Lsigma \rightarrow If/Tr/Ls Tune.
3) Caution: PAR_33 (Enc Scale) Code is necessary only in the case of installation of SIN/COS Encoder option board, Don't modify the default value "X1" when not using SIN/COS Encoder board If you modify the value, the normal operation isn't possible. For any extra information in detail, refer to the option dedicated manual.
4) It will be displayed when PAR_35(Selection for motor inertia tuning) sets as 'Yes'.

5.4. Function group (FUN_[][])

5. Function Code Table

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
FUN_22	7416	Dwell Time	Dwell Time	$0.00 \sim 100.00$	sec	0.00	No
FUN_33	7421	Acc./Dec. reference Speed	Acc/Dec Ref	0 (Max Speed) 1 (Ref Speed)		0 (Max Speed)	No
FUN_36	7424	S ratio 1 in acceleration start	Acc S Start	$0.0 \sim 50.0$	\%	0.0	No
FUN_37	7425	S ratio 2 in acceleration start	Acc S End			0.0	No
FUN_38	7426	S ratio 1 in acceleration start	Dec S Start			0.0	No
FUN_39	7427	S ratio 2 in acceleration start	Dec S End			0.0	No
FUN_40	7428	Time scale of acc./dec. time	Time scale	$\begin{aligned} & 0(0.01 \mathrm{sec}) \\ & 1(0.1 \mathrm{sec}) \end{aligned}$	-	0.0	No
FUN_41	7429	Acceleration time 1	Acc Time-1	$0.00 \sim 6000.0$	sec	$2.00{ }^{2)}$	Yes
FUN_42	742A	Deceleration time 1	Dec Time-1			$2.00{ }^{2)}$	Yes
FUN_43	742B	Acceleration time 2	Acc Time-2			$3.00{ }^{2)}$	Yes
FUN_44	742C	Deceleration time 2	Dec Time-2			$3.00{ }^{2)}$	Yes
FUN_45	742D	Acceleration time 3	Acc Time-3			$4.00{ }^{2)}$	Yes
FUN_46	742E	Deceleration time 3	Dec Time-3			$4.00{ }^{2)}$	Yes
FUN_47	742F	Acceleration time 4	Acc Time-4			$5.00{ }^{2)}$	Yes
FUN_48	7430	Deceleration time 4	Dec Time-4			$5.00{ }^{2)}$	Yes
FUN_49	7431	Selection about use of zero speed time	Use 0 Dec T	0 (No) / 1 (Yes)	-	0 (No)	Yes
FUN_51	7433	Dec.time of zero speed	0 Dec Time	$0.00 \sim 6000.0$	sec	0.00	Yes
FUN_52	7434	Dec. time of emergent stop	BX Time	$0.0 \sim 6000.0$	sec	0.0	Yes
FUN_53	7435	Initial excitation time of motor	PreExct Time	$0 \sim 10000$	ms	0	No
FUN_54	7436	Hold time	Hold Time	100 ~ 10000	ms	1000	No
FUN_55	7437	Electronic thermal Selection	ETH Select	0 (No) / 1 (Yes)	-	0 (No)	Yes
FUN_56	7438	Electronic thermal level for 1 minute	ETH 1 min	FUN_56 ~ 200	\%	150	Yes
FUN_57	7439	Electronic thermal level for continuous	ETH Cont	50 ~ FUN 55 (Only available to 150\%)	\%	100	Yes

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME		LCD DISPLAY	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DeFAULT			
FUN_58	743A	$\begin{aligned} & \text { Swi } \\ & \text { sele } \end{aligned}$	ching frequency ct		PWM Freq	2.5 ~ 10.0 ${ }^{4)}$	kHz	According to inverter capacity	No
FUN_59	743B	Pow	er on Run selection	Power-on Run	0 (No) / 1 (Yes)	-	0 (No)	Yes	
FUN_60	743C	Rest	tart after fault reset	RST Restart	0 (No) / 1 (Yes)	-	0 (No)	Yes	
FUN_61	743D	Num try	mber of auto restart	Retry Number	$0 \sim 10$	-	0	Yes	
FUN_62	743E	Delay resta	ay time before Auto art	Retry Delay	$0.0 \sim 60.0$	sec	1.0	Yes	
FUN_63	743F	Wait upon	time for Restart Stop	Restart Time ${ }^{5}$	$0.00 \sim 10.00$	sec	0.00	No	
FUN_64	7440	Over Time	rspeed Detection	OverSpdLevel	$100.0 \sim 130.0$	\%	120.0	No	
FUN_65	7441	Elect for 1	ctronic thermal level minute	OverSpd Time	$0.00 \sim 2.00$	sec	0.00	No	
FUN_66	7442	$\begin{aligned} & \stackrel{\otimes}{\stackrel{\omega}{0}} \\ & \substack{\mathbf{N}} \end{aligned}$	Open Time ${ }^{6)}$	BKOpen Time	$0.00 \sim 30.00$	sec	0.00	No	
FUN_67	7443		Open Speed ${ }^{6)}$	BKOpen Spd	$0.0 \sim 500.0$	rpm	0.0	No	
FUN_68	7444		Open Current ${ }^{6)}$	Release Curr	$0.0 \sim 150.0$	\%	20.0	No	
FUN_69	7445		Close Time ${ }^{6}$	BKClose Time	$0.00 \sim 30.00$	sec	0.00	No	
FUN_70	7446		Close Speed ${ }^{6)}$	BKClose Spd	$0.0 \sim 500.0$	rpm	0.0	No	
FUN_71	7447			RegenAvd Sel	0 (No) / 1 (Yes)	-	0 (No)	No	
FUN_72	7448			RegenAvd Lvl	$\begin{aligned} & 600(300) ~ ~ \\ & 800(400) \end{aligned}$	V	700(350)	No	
FUN_73	7449			CompFreq Lmt	$0.0 \sim 500.0$	rpm	100.0	No	
FUN_74	744A	${ }^{\times} \quad$ Speed P gain ${ }^{71}$		RegenAvd P	$0.0 \sim 300.0$	\%	50.0	Yes	
FUN_75	744B			RegenAvd I	$20 \sim 30000$	ms	500	Yes	
FUN_76	744C	Speed in battery-operated mode 8)		Batt. Speed	2.5 ~ 200.0	rpm	50.0	No	
FUN_77	744D	Bat	ery input voltage ${ }^{8)}$	Batt. Volt	12 ~ PAR_18	V	48	No	
FUN_78	744E	Chec phas	ck of input se-open	PhInOpenChk	0 (No) / 1 (Yes)	-	1 (Yes)	No	
FUN_79	7450	Che phas	ck level of input se-open	PhlnOpenLvl	$2.0 \sim 100.0$	V	3.0	Yes	
FUN_80	7451	Chec phas	ck of output se-open	PhOutOpenChk	0 (No) / 1 (Yes)	-	1 (Yes)	No	
FUN_81	7452		x. auxiliary speed	AuxSpeedMax	0.0~500.0	rpm	10.0	Yes	

5. Function Code Table

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
FUN_82	7453	Calculation method of auxiliary speed	AuxSpeedType	$0 \sim 1$	-	0	No
FUN_83	7454	Acc. time of auxiliary speed	AuxAccTime	$0.00 \sim 600.00$	sec	2.00	No
FUN_84	7455	Dec. time of auxiliary speed	AuxDecTime	$0.00 \sim 600.00$	sec	2.00	No
FUN_85	7456	Absolute/Relative mode for auxiliary speed	AuxSpeedMode	0(Absolute) /1(Relative)	-	0 (Absolute)	No
FUN_86	7457	Speed in short floor operation mode	ShortFIr Spd	0.0~Max Speed	rpm	0.0	No
FUN_87	7458	Time of short floor operation mode	ShortFIrTime	0.00~100.00	sec	0.00	No
FUN_88	7459	Low Voltage2 Selection	LV2 Enable	0 (No) / 1 (Yes)	-	0 (No)	Yes

Note)

1) It will be displayed when WEB control mode is set.
2) It will be displayed when CON 01 is set to Sensorless.
3) A default value of a time of acceleration and deceleration is different from the setting capacity of inverter.
4) Minimum/Maximum values are different from the capacity of inverter.
5) It will be displayed when FUN_03 (Stop method) is set to 'Free-run'.
6) It will be displayed when the definition of DIO_41 to DIO_43 (Auxiliary output terminal of multi-funtion) is set to 'Brake Output'.
7) It will be displayed when FUN_71 is set to 'Yes'.
8) It can set for only $5.5 \sim 22 \mathrm{~kW} / 2 / 4$ products in case 'Battery Run' of multi-function input terminal $(P 1 \sim P \&)$ is turned $O n$.

5.5. Control group (CON_[][])

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr.	CODE NAME		LCD DISPLAY	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DEFAULT			
CON_00	-	Jump	for quick view		Jump Code	$1 \sim 80$	-	-	Yes
CON_01	7501	Contr	ol mode setting	Control Mode	1 (Speed) 2 (Torque) 3 (Sensorless)	-	1 (Speed)	No	
CON_02	-	Appli setting	cation mode g	Application	General Vect Elevator ${ }^{1)}$ Synchro ${ }^{2)}$ WEB Control	-	General Vect	No	
CON_03	7503	$\underset{\sim}{\text { No }}$	P Gain 1	ASR P Gain1	0.1 ~ 200.0	\%	50.0	Yes	
CON_04	7504		I Gain 1	ASR I Gain1	0 ~ 50000	ms	300	Yes	
CON_05	7505		LPF time constant 1	ASR LPF1	0 ~ 20000	ms	0	Yes	
CON_06	7506		P Gain 2	ASR P Gain2	0.1 ~ 200.0	\%	5.0	Yes	
CON_07	7507		1 Gain 2	ASR I Gain2	$0 \sim 50000$	ms	3000	Yes	
CON_08	7508		LPF time constant 2	ASR LPF2	0 ~ 20000	ms	0	Yes	
CON_09	7509		Ramp time for ASR gain	ASR RAMP	$10 \sim 10000$	ms	1000	Yes	
CON_10	750A		Target Speed after ASR gain switch-over	ASR TarSpd	$0.0 \sim 3600.0$	rpm	0.0	No	
CON_11	750B		Reference (Loader)	Proc PID Ref	-100.0 ~ 100.0	\%	0.0	Yes	
CON_12	750 C		Ramp time	PID Ramp	$0.00 \sim 600.0$	sec	0.00	No	
CON_14	750E		P gain	Proc PID Kp	0.0 ~ 999.9	\%	0.0	Yes	
CON_15	750F		I gain	Proc PID Ki	0.0 ~ 100.0	\%	0.0	Yes	
CON_16	7510		D gain	PROC PID Kd	0.0 ~ 100.0	\%	0.0	Yes	
CON_17	7511		Positive limit	Proc Pos Lmt	$-100.0 \sim 100.0$	\%	100	Yes	
CON_18	7512		Negative limit	Proc Neg Lmt	$-100.0 \sim 100.0$	\%	100	Yes	
CON_19	7513		Output LPF time constant	Proc Out LPF	$0 \sim 500$	ms	0	Yes	
CON_20	7514		Output gain	Proc OutGain	-250.0 ~ 250.0	\%	0.0	Yes	
CON_21	7515		Type selection	Proc PID Src	$\begin{aligned} & 0 \text { (Base Speed) } \\ & 1 \text { (Ref Speed) } \\ & 2 \text { (SpeedSet) } \\ & \hline \end{aligned}$		0 (Base Speed)	No	
CON_22	7516		Speed Set setting ${ }^{3)}$	PID SpeedSet	1.00 ~ FUN_04	rpm	100.0	No	

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr.	CODE NAME		LCD DISPLAY	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DEFAULT			
CON_23	7517		Output Enable		Proc PID Enb	$\begin{aligned} & 0 \text { (Disable) } \\ & 1 \text { (Enable) } \\ & 2 \text { (Terminal) } \end{aligned}$	-	0 (Disable)	No
CON_24	7518		Hold Time	PIDHoldTime	$0 \sim 10000$	ms	1000	No	
CON_25	7519	Draw	quantity	Draw \%	-100.0 ~ 100.0	\%	0.0	Yes	
CON_26	751A	음	Control quantity	Droop \%	$0.0 \sim 100.0$	\%	0.0	Yes	
CON_27	751B		Base speed	Droop Src	0(Base Spd)/ 1(Ref Spd)		1 (Ref Speed)	No	
CON_28	751C		Ramp time	Droop Time	$0.00 \sim 600.0$	sec	2.00	Yes	
CON_29	751D		Minimum speed	Droop MinSpd	$0.0 \sim 3600.0$	rpm	0.0	Yes	
CON_30	751E		Minimum torque	Droop MinTrq	$0.0 \sim 100.0$	\%	0.0	Yes	
CON_31	751F	$\begin{aligned} & \text { © } \\ & \text { 흥 } \\ & \hline \end{aligned}$	Reference source selection	Trq Ref Src	0 (None) 1 (Analog) 2 (Keypad) 3 (Option)	-	0 (None)	No	
CON_32	7520		Reference (keypad)	Torque Ref	-180.0 ~ 180.0	\%	0.0	Yes	
CON_33	7521		Limit source selection	Trq Lmt Src	0 (Kpd Kpd Kpd) 1 (Kpd Kpd Ax) 2 (Kpd Ax Kpd) 3 (Kpd Ax Ax) 4 (Ax Kpd Kpd) 5 (Ax Kpd Ax) 6 (Ax Ax Kpd) 7 (Ax Ax Ax) 8 (Opt Opt Opt)	-	$\begin{gathered} 0 \text { (Kpd } \\ \text { Kpd Kpd) } \end{gathered}$	No	
CON_34	7522		Limit in forward run	Pos Trq Lmt	$0.0 \sim 250.0$	\%	150.0	Yes	
CON_35	7523		Limit in reverse run	Neg Trq Lmt			150.0	Yes	
CON_36	7524		Limit in regeneration	Reg Trq Lmt			150.0	Yes	
CON_37	7525		Bias source selection	Trq Bias Src	0 (None) 1 (Analog) 2 (Keypad) 3 (Option)	-	0 (None)	No	
CON_38	7526		Bias quantity	Trq Bias	$-150.0 \sim 150.0$	\%	0.0	Yes	
CON_39	7527		Bias feedforward	Trq Bias FF			0.0	Yes	
CON_40	7528		Balance quantity	Trq Balance	$0.0 \sim 100.0$	\%	50.0	Yes	

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr.	CODE NAME		LCD DISPLAY	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DEFAULT			
CON_54	7536		Speed Search selection		Speed Search	$\begin{aligned} & \hline 0000 \sim 1111 \\ & \text { (Bit setting) } \end{aligned}$	-	0100	No
CON_75	754B		Speed Search time ${ }^{4)}$	SS Time	10~60000	ms	300	No	
CON_76	754C		Speed Search P gain ${ }^{4)}$	SS P Gain	$1.0 \sim 300.0$	\%	100.0	Yes	
CON_77	754D		Speed Search I gain ${ }^{4)}$	SS I Gain	$1.0 \sim 300.0$	\%	100.0	Yes	
CON_78	754E		Speed Search LPF ${ }^{4)}$	SS LPF	0.1 ~ 300.0	ms	33.3	Yes	
CON_79	754F	Speed Spee switc	d limit of d/Torque -over	Spd Lmt Src	0.1 ~ Max Speed	rpm	1800.0	No	
CON_80	7550	Speed speed	bias of /torque	SpdLmtBias	100.0~ Max Speed	rpm	100.0	No	

Note)

1) It will be displayed only when the $E / L _I O$ board is installed.
2) It will be displayed only when the SYNC_IO board is installed.
3) It will be displayed when CON_21 (Process PID type) is set to SpeedSet.
4) It will be displayed when CON_01 is set to Sensorless.

5.6. User group (USR_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr:	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustmen During Run
				RANGE	UNIT	DEFAULT	
USR_00	-	Select Code number	Jump Code	1 ~ 67	-	-	Yes
USR_01	-	Initialize to the initial value adequate to the application	Macro Init	User Define E/L	-	User Define	No
USR_02	-	User data save	User Save	No / Yes	-	No	No
USR_03	-	Recall saved User Data.	User Recall	No / Yes	--	No	No
USR_04	-	User Group Data	User Grp	-	-	-	No

5.7. Second motor Group (2nd_[][])

5. Function Code Table

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr.	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
2nd_29	781D	Leakage coefficient	2nd Mot sLs	$0.00 \sim 300.00$	mH	-	Yes
2nd_30	781E	Stator resistance	2nd Mot Rs	$0.000 \sim 15.000$	ohm	-	Yes
2nd_35	7823	Electronic thermal level for 1 minute ${ }^{2)}$	2nd ETH 1min	100 ~ 150	\%	150	Yes
2nd_36	7824	Electronic thermal continuous level ${ }^{2)}$	2nd ETH cont	50 ~ 2nd_35	\%	100	Yes
2nd_37	7825	Inertia coefficient	Inertia	$0.001 \sim 60.000$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	-	Yes

1) When 2nd_19 is set to "User Define", 2nd 20 will be displayed.
2) It will be displayed when FUN_55 ETH Select is set to 'Yes'.

5.8 Option Group (EXT_[][])

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr.	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
EXT_00	-	Function code selection	Jump Code	$1 \sim 99$	-		Yes
EXT_01	7601	Mounted option board type	Opt B/D	0 (None) 1 (DeviceNet) 2 (Synchro) 3 (PLC-GF) 4 (PROFIBUS) 6 (RS485) 7 (MODBUS)	-	0 (None)	No
EXT_02	7602	Mounted option board version	Opt Version	1.0 ~	Ver ---		No
EXT_03	7603	Station address for the communication with PLC	Station ID ${ }^{\text {2) }}$	$0 \sim 63$	-	1	Yes
EXT_04	7604	DeviceNet baud rate	Baud Rate ${ }^{3)}$	$\begin{aligned} & 0(125) / 1(250) / 2 \\ & (500) \end{aligned}$	kbps	0 (125)	-
EXT_05	7605	DeviceNet MAC ID	MAC ID ${ }^{3)}$	$0 \sim 63$	-	63	-
EXT_06	7606	Read object setting for DeviceNet	Out Instance ${ }^{3)}$	$\begin{aligned} & 0(20) / 1(21) \\ & 2(100) / 3(101) \\ & \hline \end{aligned}$	-	0 (20)	-
EXT_07	7607	Write object settinf for DeviceNet	In Instance ${ }^{3)}$	$\begin{aligned} & 0(70) / 1(71) \\ & 2(110) / 3(111) \end{aligned}$	-	0 (70)	
EXT_09	7609	Profibus MAC ID	Profi MAC ID	1~127	-	1	Yes
EXT_10	760A	Number of option output	Output Num	$0 \sim 8^{5}$	-	3	Yes
EXT_11	760B	Option output 1	Output 1^{5}	$0000 \sim$ FFFF	HEX	0020	Yes
EXT_12	760C	Option output 2	Output 2^{5}	0000 ~ FFFF	HEX	000E	Yes
EXT_13	760D	Option output 3	Output 3^{5}	$0000 \sim$ FFFF	HEX	000F	Yes
EXT_14	760E	Option output 4	Output 4^{5}	$0000 \sim$ FFFF	HEX	000A	Yes
EXT_15	760F	Option output 5	Output 5^{5}	0000 ~ FFFF	HEX	0000	Yes
EXT_16	7610	Option output 6	Output 6^{5}	0000 ~ FFFF	HEX	0000	Yes
EXT_17	7611	Option output 7	Output 7^{5}	$0000 \sim$ FFFF	HEX	0000	Yes

5. Function Code Table

CODENo.	Comm. Addr.	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run
				RANGE	UNIT	DEFAULT	
EXT_18	7612	Option output 8	Output 8^{5}	0000 ~ FFFF	HEX	0000	Yes
EXT_19	7613	Number of option input	Input Num	$0 \sim 8^{6}$	-	2	Yes
EXT_20	7614	Option input 1	Input 1^{6}	0000 ~ FFFF	HEX	0502	No
EXT_21	7615	Option input 2	Input 2^{6}	$0000 \sim$ FFFF	HEX	0500	No
EXT_22	7616	Option input 3	Input 3^{6}	0000 ~ FFFF	HEX	0000	No
EXT_23	7617	Option input 4	Input $4^{6)}$	0000 ~ FFFF	HEX	0000	No
EXT_24	7618	Option input 5	Input ${ }^{6}$	0000 ~ FFFF	HEX	0000	No
EXT_25	7619	Option input 6	Input $6{ }^{6}$	0000 ~ FFFF	HEX	0000	No
EXT_26	761A	Option input 7	$\operatorname{Input} 7^{6}$	0000 ~ FFFF	HEX	0000	No
EXT_27	761B	Option input 8	Input 8^{6}	0000 ~ FFFF	HEX	0000	No
EXT_30	761E	485 communication mode	Parity/Stop ${ }^{1)}$	$\begin{aligned} & 0 \text { (} 8 \text { None/1Stop) } \\ & 1 \text { (8None/2Stop) } \\ & 2 \text { (8Even/1Stop) } \\ & 3 \text { (8Odd/1Stop) } \end{aligned}$	-	0 (8None) 1Stop)	Yes
EXT_31	761F	Delay time of 485 communication response	Delay Time ${ }^{1)}$	2 ~ 1000	ms	5	Yes
EXT_32	7620	Station address for built-in 485	Int485 St ID	1 ~ 250	-	2	Yes
EXT_33	7621	Built-in 485 baudrate	Int485 Baud	$0(1200 \mathrm{bps})$ $1(2400 \mathrm{bps})$ $2(4800 \mathrm{bps})$ 3 (9600 bps) 4 (19200 bps) $5(38400 \mathrm{bps})$	-	$\stackrel{3}{3}(9600 \mathrm{bps})$	Yes
EXT_34	7622	Built-in 485 communication mode	Int485 Mode	$\begin{aligned} & 0 \text { (8None/1Stop) } \\ & 1 \text { (8None/2Stop) } \\ & 2 \text { (8Even/1Stop) } \\ & 3 \text { (8Odd/1Stop) } \end{aligned}$	-	-	Yes
EXT_35	7623	Delay time for built-in 485 communication response	Int485 Delay	2 ~ 1000	-	0 (None)	Yes
EXT_36	7624	Run method when the command of built-in 485 is lost.	Int485 LostC	$\begin{aligned} & \hline 0 \text { (None) } \\ & 1 \text { (FreeRun) } \\ & 2 \text { (Stop) } \end{aligned}$	-	-	Yes
EXT_37	7625	Decision time for losing the command of built-in 485	Int485 LostT	1.0 ~ 30.0	-	-	Yes
EXT_98	7662	Profibus data swap Selection	SWAP Sel	0 (No) / 1 (Yes)	-	0 (No)	No
EXT_99	7663	Update for communication parameter changes	Comm UpDate ${ }^{4)}$	0 (No) / 1 (Yes)	-	0 (No)	No

1) It will be displayed when RS-485 communication option board is installed.
2) It will be displayed when PLC-GF communication option board is installed.
3) It will be displayed when DeviceNet communication option board is installed.
4) Itwill be displayed when Profibus communication option b oard is installed.
5) From EXT_11 to EXT_18 (Option ouput) are displayed according to the number from EXT_11.
6) From EXT_20 to EXT_27 (Option input) are displayed according to the number from EXT_19.
Refer to the appropriate option manual.

5.9 Analog AIO Group (AIO_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr.	CODE NAME		LCD DISPLAY	SETTING DATA			Adjustment Puring Run	
				RANGE	UNT	DEFAULT			
AIO_00	-	Select code number			Jump Code	1~83	-	-	Yes
AIO_01	7701	Multi-function Analog Input Ai1	Multi-function Analog input Ail definition	Ai1 Define	0 (Not Used) 1 (Speed Ref) 2 (Proc PID Ref) 3 (Proc PID F/B) 4 (Draw Ref) 5 (Torque Ref) 6 (Flux Ref) 7 (Torque Bias) 8 (Torque Limit) 9 (Line SPD Ref) ${ }^{11}$ 10 (Tension Ref) ${ }^{1)}$ 11 (Dancer Ref) ${ }^{1)}$ 12 (Taper Ref) ${ }^{1)}$ 13 (Tension F/B) ${ }^{1)}$ 14 (Diameter) ${ }^{1)}$ 15 (Diam Preset) ${ }^{11}$	-	$\begin{gathered} 0 \\ \text { (Not } \\ \text { Used) } \end{gathered}$	No	
AIO_02	7702		Source definition	Ai1 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \\ & 4(0 \rightarrow 20 \mathrm{~mA}) \\ & 5(20 \rightarrow 0 \mathrm{~mA}) \end{aligned}$	-	$\begin{gathered} 0 \\ (-10 \\ 10 \mathrm{~V}) \end{gathered}$	No	
AIO_03	7703		Minimum Voltage	Ai1 In X1	0.00 ~ Ai1 In X2	\%	0.00	Yes	
AIO_04	7704		Minimum Voltage Bias	Ai1 Out Y1	-10.00 ~ Ai1 Out Y2	\%	0.00	Yes	
AIO_05	7705		Maximum Voltage	Ai1 In X2	$0.00 \sim 100.00$	\%	100.00	Yes	
AIO_06	7706		Maximum Voltage Gain	Ai1 Out Y2	$0.00 \sim 250.00$	\%	100.00	Yes	
AIO_07	7707		Minimum Voltage	Ai1 - $\ln \mathrm{X} 1$	Ai1 - In X2 ~ 0.00	\%	0.00	Yes	
AIO_08	7708		Minimum Voltage Bias	Ai1-Out Y1	Ai1 -Out Y2 ~ 10.00	\%	10.00	Yes	
AIO_09	7709		Maximum Voltage	Ai1 - $\ln \mathrm{X} 2$	-100.00 ~ 0.00	\%	-100.00	Yes	
AIO_10	770A		Maximum Voltage Gain	Ai1 -Out Y2	-250.00~0.00	\%	-100.00	Yes	
AIO_11	770B		LPF time constant	Ai1 LPF	$0 \sim 2000$	ms	-	-	
AIO_12	770C		Command loss Criterion select	Ai1 Wbroken	0 (None) 1 (Half of x 1) 2 (Below x1)	-	0 (None)	No	

Note)

1) Displayed only when WEB mode setting.

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run	
				RANGE	UNIT	DEFAUL		
AIO_73	7749	Multi-function Analog input command loss time	Time out	0.1 ~	20.0	sec	1.0	No
AIO_74	774A	Multi-function analog Output AO1 Definition	A01 Define	0 (Not U 1 (Ai1 V 2 (Ai2 V 3 (Ai3 V 4 (Ai4 V 5 (Ai5 V 7 (PreRa 8 (PostR 9 (ASR 11 (Motor 12 (Motor 13 (Speed 14 (ASR 15 Torque 16 (PosT 17 (NegT 18 (RegT 19 (Torqu 20 (IqeRe) 21 (lqe) 22 (Flux Re 23 (IdeRe 24 (Ide) 25 (ACR 26 (ACR 27 (VdeR 28 (VqeR) 29 (Out Am 30 (Out V 31 (Powe 32 (DC B 33 (Proc 34 (PROC 35 (Proc 36 (Line 37 (Tens i 38 (Diam 39 (MotN 40 (Inv Te 41	d) e) e) ue) ue) ${ }^{2)}$ ue) ${ }^{2)}$ mp Ref) mp Ref) Ref) Speed) SdEst) ${ }^{3)}$ Dev) t) Bias Limit) Limit) Limit) Ref) f) Out) Out) ps RMS) RMS) Volt) Ref) PIF/B) Out) eed) ${ }^{1)}$ (Out) ${ }^{1)}$ er) ${ }^{1)}$ Temp) p)	-	$\begin{gathered} 0 \\ \text { (Not } \\ \text { Used) } \end{gathered}$	No

5. Function Code Table

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr.	CODE NAME		$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	Setting Data			Adjustment During Run	
				Range	Unit	Default			
AIO_75	774B	¢	Source Definition		A01 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \\ & \hline \end{aligned}$	-	$\left\lvert\, \begin{gathered} 0(-10 \rightarrow \\ 10 \mathrm{~V}) \end{gathered}\right.$	No
AIO_76	774C		Bias	A01 Bias	-100.0 ~ AlO_77	\%	0.0	No	
AlO_77	774D		Gain	AO1 Gain	$0.0 \sim 500.0$	\%	100.0	No	
AlO_78	774E		Bias	AO1 Bias	AIO_79 ~ 0.0	\%	0.0	Yes	
AIO 79	774F	응	Gain	AO1 Gain	$0.0 \sim-500.0$	\%	-100.0	Yes	
AIO_80	7750	$\begin{aligned} & \stackrel{\check{4}}{\Sigma} \\ & \hline \end{aligned}$	Absolute value setting	AO1 ABS	0 (No) / 1 (Yes)	-	0 (No)	No	
AlO 81	7751	은	Definition	AO2 Define	Refer to AIO_74~78				
AIO_82	7752	¢	Source Definition	AO2 Source					
AlO 83	7753	音	Bias	AO2 Bias					
AlO 84	7754	$\stackrel{3}{2}$	Gain	AO2 Gain					
AlO_85	7755		Bias	AO2 Bias					
AIO_86	7756		Gain	AO2 Gain					
AIO_87	7757		Absolute value setting	AO2 ABS					

Note)

1) Displayed only when WEB mode setting.
2) It is available when Extension I/O (EXTN_I/O) is applied.
3) It will be displayed when CON_01 is set to 'Sensorless'.

5.10 Sensorless control Group (SLS_[][]) ${ }^{1)}$

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr.	CODE NAME	LCD DISPLAY	Setting Data			Adjustment During Run
				Range	Unit	Default	
SLS_00	-	Function code selection	Jump Code	$1 \sim 23$			Yes
SLS_01	7D01	Flux estimation time with sensorless control	Flux BD Time	100 ~ 60000	ms	500	Yes
SLS_02	7D02	P gain for flux estimation	FlxEst PGain	0.1 ~ 999.9	\%	100.0	Yes
SLS_03	7D03	I gain for flux estimation	FlxEst IGain	0.0 ~ 999.9	\%	100.0	Yes
SLS_04	7D04	cut-off frequency for sensorless ASR	ASR Cut-Off	$1.0 \sim 600.0$		20.0	Yes
SLS_05	7D05	Sensorless ASR P gain 1	ASR P Gain1	0.1 ~ 999.9	\%	100.0	Yes
SLS_06	7D06	$\begin{aligned} & \text { Sensorless } \\ & \text { ASR I gain } 1 \end{aligned}$	ASR I Gain1	0.1 ~ 999.9	\%	100.0	Yes
SLS_07	7D07	Sensorless ASR LPF 1	ASR LPF1	$0 \sim 20000$	ms	0	Yes
SLS_08	7D08	Sensorless ASR P gain 2	ASR P Gain2	0.1 ~ 999.9	\%	50.0	Yes
SLS_09	7D09	Sensorless ASR I gain 2	ASR I Gain2	0.1 ~ 999.9	\%	50.0	Yes
SLS_10	7D0A	Sensorless ASR LPF 2	ASR LPF2	$0 \sim 20000$	ms	0	Yes
SLS_11	7DOB	Switch-over ramp for sensorless ASR	ASR RAMP	10~10000	ms	1000	Yes
SLS_12	7DOC	Sensorless ASR target speed	ASR TarSpd	$0.0 \sim 3600.0$	rpm	0.0	No
SLS_13	7DOD	Sensorless P gain	SpdEst PGain	0.1 ~ 999.9	\%	100.0	Yes
SLS_14	7DOE	Sensorless I gain	SpdEst IGain	0.1 ~ 999.9	\%	100.0	Yes
SLS_15	7DOF	Cut-off frequency for sensorless ACR	ACR Cut-off	$10.0 \sim 3000.0$		1200.0	Yes
SLS_16	7D10	Regerneration avoidance selection	ZeroAvd Sel	0 (No) / 1 (Yes)		1 (Yes)	No
SLS_17	7 D 11	P gain of sensored speed controller	SensoredKp	$0 \sim 10.0000$		0.0000	No
SLS_18	7 D 12	I gain of sensored speed controller	SensoredKi	$0 \sim 10.0000$		0.0000	No
SLS_19	7D13	P gain of sensorless speed controller	SensorlessKp	$0 \sim 10.0000$		0.0000	No
SLS_20	7D14	I gain of sensorless speed controller	SensorlessKi	$0 \sim 10.0000$		0.0000	No
SLS_21	7D15	Command of flux estimation	FluxEst Ref	$0.0000 \sim 6.5535$		0.0000	No
SLS_22	7D16	Feedback of flux estimation	FluxEst Fbk	$0.0000 \sim 6.5535$		0.0000	No
SLS_23	7D17	Rs scale	Rs Scale	$100.0 \sim 200.0$	\%	120.0	Yes

1) It will be displayed when CON_01 is set to Sensorless.

6. Inspection and Replacement

Chapter 6 - Inspection and replacement

LS Vector Inverter, STARVERT-iV5, is an industrial electronic product that adopts up-to-date semiconductor device. It may have a failure caused by the ambient environment such as temperature, humidity, vibration, etc. or an excessive use of the component over its duration. It requires a routine checking to prevent such failure in advance.

6.1 Precautions

CAUTION

- Before starting the maintenance work, the operator must check out the power input of the inverter.
- Large-capacity electrolytic condenser in the power electronic circuit remains charged with power even after the power is off. So be sure to start the maintenance work after you acknowledged the power has been completely discharged using a proper tester.
- Be sure to use a rectifier type volt meter to obtain an accurate voltage when directly measuring the output voltage of inverter. General volt meter or digital volt meter may result in spurious operation or indicate wrong value due to high frequency PWM output voltage of the inverter.

6.2 Checking Points

Electronic product is not intended for a permanent use. When it exceeds the duration even under the normal service environment, the product may have trouble in its operation due to change in the nature of the parts. To prevent such circumstance, it requires a routine and regular checking.
Especially if you use it under the following environment, have it checked with a shorter interval than the regular checking.

- When the temperature is relatively high in the installed place
- When the product is operated with a frequent start and stop
- When the input AC power and load vary seriously
- When it has severe vibration or shock
- When there is corrosive gas, combustible gas, oil sludge, dust, salts, metal powder, etc

6. Inspection and Replacement

CAUTION

- The failure of the device used in the inverter may not be predicted in advance. The failure of the device may cause the error of input power fuse or the fault trip. If you are suspicious of the failure of device, please contact our sales representative.

6.3 Routine Checking

$\frac{\mathscr{9}}{\frac{9}{4}}$		ㅇ 은 응 0 0	$\begin{aligned} & \text { 을 } \\ & \text { 3 } \\ & \text { 오 ㅇ } \end{aligned}$		
$\begin{aligned} & \frac{3}{2} \\ & \frac{0}{0} \\ & 0 \\ & 0 \end{aligned}$		Check ambient temperature, humidity, existence of dust, etc..	See the Caution for Safety.	Ambient temperature should be $-10 \sim+40$ degree C ; Freezing is not allowed; Ambient humidity to be 50% or less; Dew is not allowed.	
		Isn't there any vibration or unusual sound?	Judgement by visual or auditory sense.	There must be no unusual record.	-
		Is the main circuit voltage normal	Check the voltage among R, S, and T phases on the inverter terminal .block	-	
		1) Isn't the liquid inside leaked? 2) Isn't the safety vent protruded? No sagging phenomenon?	Check 1) and 2) by eyes.	There must be no unusual result from 1) and 2).	-
	$\begin{aligned} & \text { 응 } \\ & \stackrel{=\bar{O}}{\text { 준 }} \end{aligned}$	1) Isn't there any unusual vibration or unusual sound?	1) Turn it using hand with the power Off.	1) Rotate it softly	-

6．Inspection and Replacement

$\frac{\mathscr{W}}{\frac{9}{4}}$	인 ⿹ㅡㄹ 잉	일 응 0 8			$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{y}{0} \\ & \stackrel{B}{3} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$
		Do they have excessive heat？	1）Check if it is from overload or not． 2）Fasten the screw tightly． 3）Check if the inverter＇s heat sink is polluted． 4）Check the ambient temperature．	There must be no unusual record．	
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\text { In }}{\underline{0}} \\ & \underline{\underline{I}} \end{aligned}$	$\stackrel{\stackrel{\vdots}{ \pm}}{\stackrel{\oplus}{ \pm}}$	Is the indicator value normal	Check the indicator value on the display of the panel surface．	Check the value under the regulation and standard value．	
$\begin{aligned} & \frac{\grave{⿳ 亠}}{2} \\ & \stackrel{y}{\circ} \end{aligned}$		1）Isn＇t there any unusual vibration or unusual sound？ 2）Isn＇t there any unusual smell？	1）Check by ear， hand，and eye． 2）Check overheat， damage，etc． 3）Check the area connected with the machine． 4）Measure the vibration of the motor． 5）Fasten the screw on the junction tightly．	There must be no unusual record．	－

6. Inspection and Replacement

6.4 Regular Checking (1 year interval)

$\stackrel{\text { ¢ }}{\text { ¢ }}$		Description	How to Check	Judgment Criterion	
		1) Megger checking (between the main circuit terminal and ground terminal) 2) Isn't any fixed area missing? 3) Isn't there any trace of overheat on each component?	1) Unfasten the connection of inverter, connect R, $\mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}$, and W terminals, and then measure the gap between this area and the ground terminal using a megger. 2) Fasten the screws. 3) Check it visually	1) To be $5 M \Omega$ or more There must be no unusual result from 2) and 3)	$\stackrel{\rightharpoonup}{0}$ 0 \sum_{0}^{0} 0
		1) Isn't there any corrosion on the conductor?2) Isn't there any damage to the wire sheath?	1) Switch the power Off and then turn it with a hand. 2) Fasten it once again.	1) Rotate it softly 2) There must be no unusual record	'
	$\begin{aligned} & \overline{\widetilde{0}} \\ & . \frac{1}{E} \\ & \text { 등 } \\ & \stackrel{O}{0} \end{aligned}$	Isn't it damaged?	Check by eyes.	There must be no unusual record	'
		Measure the electrostatic capacity	Measure using the capacity meter.	85% or more of the rated capacity	
	$\begin{aligned} & \frac{入}{0} \\ & \stackrel{0}{0} \end{aligned}$	1) Isn't there any chattering sound? 2) Isn't there any damage to the contact point?	1) Check by ears. 2) Check by eyes.	There must be no unusual record	'

6. Inspection and Replacement

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

6. Inspection and Replacement

$\frac{\text { \% }}{\frac{1}{4}}$		Description	How to Check	Judgment Criterion	
	$\begin{aligned} & \text { 들 } \\ & \text { 등 } \\ & \text { 히 } \end{aligned}$	1) Check the unbalance of the output voltage during the operation of inverter 2) Display circuit must not have any unusual phenomenon after the sequence protecting operation test is done	1) Measure the voltage among the U, V, and W at the Inverter output terminal. 2) Have the inverter protecting circuit output shorted out or open it by force.	1) Balance of interphase voltage 200V (400V) Use: Within $4 \mathrm{~V}(8 \mathrm{~V})$ 2) Unusual circuit to be operated in sequence	
		1) Isn't there any looseness on the junction? 2) Isn't cooling pin or cooling fan covered with dust	1) Fasten it once again. 2) Check with eyes and then remove dust	1) There must be no unusual record 2) There must be no dust	
$\begin{aligned} & \bar{o} \\ & \stackrel{0}{0} \\ & .0 \overline{0} \\ & \underline{I} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{\Delta}{\infty} \end{aligned}$	Is the indicator value normal?	Check the indicator value on the display of the panel surface.	Check the value under the regulation and standard value	

6.5 Meggar Test

(1) For Exterior main circuit, remove all cables from inverter terminals to ensure that test voltage is not applied to the inverter.
(2) Use DC 500V meggar and isolate the main power before starting measurement. If the test voltage is connected to the control circuit, remove all connection cables to the control circuit.
(3) Perform the Meggar test only between the common cables connected to the main circuit and ground.

6.6 Regular Checking (2 year interval)

采	$\begin{aligned} & \text { 요 } \\ & \frac{5}{5} \\ & \frac{0}{5} \\ & \frac{9}{0} \end{aligned}$	Description	How to Check	Judgment Criterion	
		Megger Checking (between the main circuit terminal and the ground terminal	Unfasten the connection of the inverter, and then measure the gap among R, S, T, U, V, and W terminals and this area after having them shorted out.	$5 \mathrm{M} \Omega$ or more	
$\begin{aligned} & \grave{\circ} \\ & \stackrel{0}{0} \end{aligned}$		Megger checking (between the output terminal and the ground terminal)	Unfasten the connection among U, V, and W, and then bind the motor wiring.	$5 \mathrm{M} \Omega$ or more	

6.7 Replacement Interval and Maintenance of the Key Components

Inverter constitutes a number of electronic parts including semiconductor device. The parts used in the inverter are subject to change as time elapses for its construction or nature. Therefore without any replacement of parts, it may cause failure or deterioration in the performance the inverter. For this reason, it requires regular replacement of the parts.

Name of parts	Standard interval for replacement	Symptoms	How to Replace and Countermeasure
Cooling Fan	$2 \sim 3$ years	Poor Rotation	Replacement into new part
DC Link condenser	5 years	Reduction in Capacity	Replacement into new part
Control Panel Flat Condenser	5 years	Reduction in Capacity	Replacement into new part
Control Board Relay	-	Poor Operation	Replacement into new part

6. Inspection and Replacement

Name of parts	Standard interval for replacement	Symptoms	How to Replace and Countermeasure
Braking Resistance	-	Reduction in Capacity	Replacement into new part

- Duration of the key components is based on the continuous operation at a rated load. Therefore the duration is subject to change depending on the service condition and ambient environment.

6.8 How to Check at Diode Module \& IGBT Inspection

1. Remove the power source wire ($\mathrm{R}, \mathrm{S}, \mathrm{T}$) and the motor output wire (U , V, W) connected from the outside
2. Check and determine whether R, S, T, U, V, W, B1 (or P/L1), N of the inverter terminal block are turned on or not by changing the polarity of the tester between each other.
3. Perform the test after making sure that the electrolytic condenser is discharged.
4. When they are not turned on, they will indicate several mega resistance values. It may indicate several mega resistance values when it is turned on for a moment owing to the influence of electrolytic condenser. When they are turned on, it indicates several $\Omega \sim$ dozens of Ω. The indicator value varies depending on the type of module, the type of tester, etc., but such values are shown in a similar range when it is sound product.

Chapter 7 - Troubleshooting and maintenance
 7.1 Fault Display

When a fault occurs, the inverter turns off its output and displays the fault status
Wescribed below. In this case, the cause must be corrected before the fault can
de cleared. If protective function keeps active, it could lead to reduction in product
life and damage to the equipment.

Protective function	Keypad display	Description
Over Current	$\begin{aligned} & \text { OC-U } \\ & \text { OC-V } \\ & \text { OC-W } \end{aligned}$	The inverter turns off its output when the output current of the inverter flows more than 200% of the inverter rated current.
Ground Fault Protection	Ground Fault	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter. Over current trip function may protect the inverter when a ground fault occurs due to a low ground fault resistance.
Over voltage protection	Over Voltage	The inverter turns off its output if the DC voltage of the main circuit increases higher than the rated value (200 V class: 400 V DC, 400 V class: 820 V DC) when the motor decelerates or when regenerative energy flows back to the inverter due to a regenerative load. This fault can also occur due to a surge voltage generated at the power supply system.
Low Voltage Protection	Low Voltage	The inverter turns off its output if the DC voltage is below the detection level (200V class: 180Vdc, 400V class: 360 Vdc) because insufficient torque or over heating of the motor can occurs when the input voltage of the inverter drops.
Overload Protection	Over Load	The inverter turns off its output if the output current of the inverter flows at 180% of the inverter rated current for more than the current limit time (S/W).
Inverter Overload	Inv OLT	The inverter turns off its output when the rated current of the inverter flows more than regulation level (150\% for 1 minute-Inversely proportional to time).
Heat Sink Over Heat	InvOver Heat	The inverter turns off its output if the heat sink over heats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink.
	OHD Open	The inverter turns off its output when OHD is opened and

Protective function	Keypad display	Description
	${ }^{11}$	the heat sink is overheated.
Inverter NTC Thermistor Open	InvThem OP	When inverter NTC Thermistor is open, inverter stops its output.
Motor overheat	MotOver Heat	When motor temp exceeds $150^{\circ} \mathrm{C}$, inverter stops its output to protect motor from overheated.
Motor Thermistor Error	MotThem Err	When there is an error in Thermistor that measures the temperature of motor, inverter stops its output. (Error-NTC: open , PTC: short-circuit)
Electronic Thermal	E-Thermal	The internal electronic thermal of the inverter determines the over heating of the motor. If the motor is overloaded the inverter turns off the output. The inverter cannot protect the motor when driving a multi-pole motor or when driving multiple motors, so consider thermal relays or other thermal protective devices for each motor. Overload capacity: 150% for 1 min .
External fault B	Ext Trip-B	Use this function if the user needs to turn off the output by an external fault signal.
IGBT Short	Arm Short Arm Short-DB	Inverter output is stopped when IGBT Arm short or output short occurs. (Arm Short-DB is only come under SV110~220iV5)(
Fuse Open	Fuse Open	The inverter turns off its output by opening the fuse when something is wrong with the main circuit IGBT to protect the wiring from being damaged from short currents
Encoder Error	Encoder Err	1) Displayed when Encoder signal fault occurs.(H/W) 2) Displayed when there is a discord of detection time standard of motor error of PAR-14.(S/W)
BX protection (Instant Cut Off)	BX	Used for the emergency stop of the inverter. The inverter instantly turns off the output when the BX terminal is turned ON, and returns to regular operation when the BX terminal is turned OFF. Take caution when using this function.
Motor overspeed	Over Speed	Displayed when motor rotates over 120\% its rated speed.
Communication Error	COM Error CPU Error	Displayed when the inverter cannot communicate with the keypad.

Protective function	Keypad display	
H/W Error	HW-Diag	Displayed when CPU has a problem, and then the inverter blocks the IGBT gating signals.
FAN Lock		

*1) It only comes under SV2800~5000iV5.

7.2 Monitoring Fault Condition

7.2.1 Monitoring fault display

Code	LCD display	Description
DIS_05	OC-U	Current fault displayed. (U-phase overcurrent)

- Check the current fault display before pressing reset key. pressing [PROG] key and [$\boldsymbol{\Delta}(\mathrm{Up})],[\boldsymbol{\nabla}(\mathrm{Down})]$ shows operating status at the time of the fault such as output frequency, current, voltage, F/B value, torque current reference/actual value, dc link voltage, input/output terminal status, operating status and run time) and the fault contents. Press [ENT] key to exit. Pressing [RESET] key will store the value in DIS_05 [Last Fault1].

7.2.2 Monitoring previous faults

- Previous 2 faults are saved in DIS_05 "Last fault 1/2". Last fault 1 is more recent fault than Last fault 2. Refer to "7.2.1 monitoring fault display" to check the fault contents.

Code	LCD display	Description
DIS_05	Last Fault1	Previous fault 1
DIS_05	Last Fault2	Previous fault 2

- DIS_05 " Fault Clear" removes Last Fault1, Last Fault2 data.

7.3 Fault Reset

There are 3 ways to reset the inverter. After performing this, the number of automatic restart is initialized.

1) Use [RESET] key on the keypad.
2) Short the RST-CM terminal to reset.
3) Cycle the power (turn the power OFF and turn it ON).

7.4 Fault Remedy

7.4.1 Check the below diagnosis before troubleshooting.

1) Is the wiring of a motor and an inverter conducted correctly?

Refer to Main Circuit Terminal.
2) Is the Encoder-type jumper on I/O PCB set correctly?

Refer to Encoder wiring

If encoder type is either Complementary or Open collector, slide JP4 switch to "OC" and slide JP2 switch to "P15". If encoder type is Line Drive, slid the JP4 switch to "LD" and slide JP2 switch to "P5".
Factory default: Line Drive Type
3) Is motor rotating direction set correctly?

Refer to Monitoring Encoder operation.
STARVERT-iV5 defines Forward rotation when motor rotates in clockwise from the view of Rear Bracket (Motor FAN).
4) Is inverter operating correctly in no load condition?

Refer to Operation via Keypad and Control Terminal.

7.4.2 Check list before installation

Check 1) ~ 9) before installation. Check 10) ~ 16) when problem has occurred during use.

1) The Motor Does Not Rotate

(1) Is red lamp blinking?

Check whether other trips occur in DIS_05.
If fault occurs, press [RESET] key to clear trip status and try operation.
Check whether BX (Emergency stop) signal is applied on keypad and input terminal defined as BX is ON in DIS_03. If so, release BX and try operation.

DIS	Terminal In
03	0010000000

(2) RUN/STOP method is properly set?

Check FUN_01 RUN/STOP method setting matches the actual operation mode (RUN/STOP via keypad or terminal). If FUN_01 is set to terminal but operation is not performed, change it to keypad mode and try operation. If FUN_02 is set to Keypad but operation is not performed, change it to Terminal and try operation. If either way cannot work, refer to No. 6).
2) The motor does not rotate when Green lamp on [REV], [FWD] key is ON.
(1) Is inverter U, V, W output correctly wired to motor U, V, W output?

Refer to Main circuit terminal.
(2) Is the motor shaft jammed by brake or other mechanical devices?
check the directly connected brake's relay on time and brake open time.
(3) On DIS_01 PreRamp Ref, is speed reference displayed not " 0 "?
set the desired speed reference if it is set to "0". If it is incorrectly set, refer to No. 7).
(4) Is PAR_07 [motor rating] properly set?
check the motor nameplate and setting matches.
(5) Is PAR_16 [motor speed] properly set?
check the motor nameplate and setting matches.
(6) Is PAR_22 [motor rated current] properly set?
check the motor nameplate and setting matches.
(7) Is PAR_26 [motor flux current] properly set?

If LG-OTIS vector motor is not used, consult LS representative or set the correct value in accordance with application. However, it cannot set to exceed PAR_22 [motor rated current]. Normally it is 30~40 \% of rated motor current.
(8) Is PAR_21 [motor rated slip] properly set?
check the motor nameplate and setting matches.
(9) Is PAR_27 [Motor secondary time constant (Tr) properly set?
if motor is not LG-OTIS vector motor, perform the Auto-tuning or set this correctly. If it is incorrectly set, inverter performance will be dramatically deteriorated.
(10) Is PAR_19 [number of motor poles] properly set?
check the motor nameplate and setting matches.
(11) CON_28 [Torque limit setting] is set to " Kpd Kpd Kpd ". Is CON_29 ~ CON_31 setting correct?
CON_29 ~ CON_31 marks upper limit in inverter output torque. For the application lower torque limit is required, when torque shortage occurs, increase this value a little. STARVERT-iV5 's overload capacity is 150\%/1 min. when using torque limit over 150\%, time and the number of use should be limited.
(12) When CON_28 [torque limit setting] Analog or Option, the corresponding input value is properly set?
CON_28 is set to Analog, one of $\mathrm{Ai} 1 / \mathrm{Ai} 2 / \mathrm{Ai3}$ should be defined as "Torque limit". If set to Option, refer to Option manual for proper setting.

3) Motor speed is not increasing while it is running.

(1) Is PAR_10 [number of Encoder pulse] set properly?
factory default is 1024. If it is not OTIS vector motor, contact with Encoder maker.
(2) FUN_01 is set to "Keypad", FUN_02 to "Keypad1", FUN_12(Speed 0) to 100.0rpm and press [FWD] key but motor speed is not 100.0rpm. In this case, check for encoder wiring.
If encoder wiring is disconnected or switched, it rotates only uni-direction with low speed (30.0 ~ 60.0rpm) and over 150% its rated current. Check the encoder wiring and whether wiring of defined terminal and motor encoder terminal is shorted.
(3) If motor speed does not increase and keeps abnormally $30.0 \sim 60.0 \mathrm{rpm}$, stop the motor and switch the wiring of A and B phase of Encoder. Check whether motor rotating direction is reversed as seen in No. 4).
In the case of Line Drive type encoder, wire $A+$, $A-$ phase to $B+, B$ - and $B+$, B- phase to $\mathrm{A}+$, A -
Complementary / for the case of Open Collector type encoder, reverse the wiring of PA and PB.
Or switch the encoder direction in PAR 11 (Enc Dir Set) and try RUN.

4) Motor rotates in reverse direction.

Switch the wiring of output phase V and W. Switch the wiring of encoder phase A and B as indicated in No. 3).
Or switch the encoder direction in PAR 11(Enc Dir Set) and try RUN.

5) Motor rotating direction cannot be changed.

(1) Is RUN/STOP setting proper?

Check FUN_01 RUN/STOP command setting matches the actual operating mode. If FUN_01 is set to Terminal (Keypad) but operation cannot be made, change it to Keypad (Terminal). If it does not work, refer to No. 6).
(2) Is one of the terminal defined as FWD/REV Run Disable ON?

Check one of DIO_01 ~ DIO_07 terminals is defined as "Prohibit FWD" or "Prohibit REV". If so, check input terminal status in DIS_01 ~ DIS_03. If rotating direction is not changed, check the terminal is ON .

6) Keypad or terminal malfunctions.

(1) When [REV], [FWD], [STOP] key on the keypad is lit Red or Green,

Refer to 1) if RUN/STOP is not activated by Keypad or Terminal. If setting change is not available, PAR_04 may set to prohibit parameter write. To release this setting, enter 12 in PAR_04. If problem persists, contact LS representatives.
(2) When [STOP] key is blinking,

This marks trip condition or BX active status. Check any other trips occur in DIS_05. Reset the trip and try run. Check BX signal is ON on the keypad and input terminal signal in DIS_01 ~ DIS_03. Reset BX and try run.
(3) When green lamp on [REV], [FWD] key is blinking,

It marks accel/decel is in operation. If inverter keeps operation in this condition, it means load capacity calculation is incorrect and exceeds inverter rating. Refer to No. 16).

7) Operating speed does not change during run.

(1) Is FUN_02 speed setting proper?

Speed setting methods in STARVERT-iV5 are Analog input, Keypad and Option. Select appropriate one among them.
(2) Is DIS_01(PreRamp Ref) setting the correct value?

Current speed ref. Values are displayed in DIS_01 ~ DIS_03. Check the displayed value matches the setting value. If speed is not variable, check the encoder. Refer to No. 13).
(3) Speed setting method is "Keypad" and speed ref displayed DIS_01 ~ DIS_03 is not correct.
Check terminal setting in DIO_01 ~ DIO_07 defined as Multi-step speed setting.
(4) When speed setting method is Analog and DIS_01 ~ DIS_03 display is not
desired value,
Check one of Ai1 ~ Ai3 is defined as "Speed Ref.".
8) Motor keeps rotating at OV condition when speed setting is via Analog input.
(1) When AIO_11 Definition of Ai1 input is set to "Speed Ref",

Adjust the Ai1_Bias at AIO_14. (Setting unit: \%).
The displayed value is speed command. Set the desired value (ex : 0.0\%) and press [ENTER] key.
(2) Follow the same steps to check Ai2 ~ Ai3.
9) Motor detects speed reference but motor rpm is showing decreasing while motor is overheated or hunting.
(1) Check the motor wiring.

There is a possibility of incorrect motor wiring when motor is $220 \mathrm{~V} / 380 \mathrm{~V}$ dual rating. Motor does not normally rotate when pole number setting is incorrect. However, motor may get damaged in case of miswiring. If this problem occurs, contact motor sales office. Refer to Power terminal description in this manual.
(2) Is motor capacity set correctly?

Check PAR_07 motor rating selection is set the same as motor in use. See the nameplate for motor rating.
(3) Is motor parameter set correctly?

Motor parameters vary by manufacturer. STARVERT-iV5 setting is based on OTIS vector motor as default. Motor parameters should be changed when other makers' motor is used.

10) Nothing displayed on the LCD?

(1) Is the connection of inverter and keypad tight?

Check the inverter and Keypad connection.
(2) Is input power turned on?

Check inverter power is applied. If nothing is displayed on the LCD in this condition, contact LS representatives.
11) Motor speed oscillates and speed is not constant during constant Run.
(1) Is encoder wired using twisted shield cable?
encoder signal wiring should be conducted with Twisted Shield Cable. Otherwise, speed may oscillate at low speed (or high speed) due to encoder input noise, leading to motor vibration or abnormal motor sound at stop.
(2) Is the connection of inverter and motor and encoder grounding proper?

Check the grounding of inverter and encoder is connected. This could occur when not connected. Fixed screw for the connection of encoder grounding and the inverter is located on the right bottom side of the control PCB. Loosen the fixed screw and insert the ground wire of the encoder and tighten the screw. (Refer to encoder wiring diagram). For grounding the motor, use G of the inverter Main terminal.
(3) Connect inverter panel grounding connected with motor grounding to the building grounding.
If not, incorrect motor speed may be input due to encoder input noise.
(4) Is too large speed gain assigned to the inverter while motor load is light?

Motor oscillates at stop when PI gain is set much larger than the actual load in CON_03 and CON_04. Therefore, gain should be set accordingly. Responsiveness increases when P gain is set higher and I lower but system may become unstable. Gain value varies system but generally set $30 \sim \mathbf{7 0 \%}$ for P gain and set $100 \sim 500 \mathrm{~ms}$ for I gain.
(5) Increase PAR_13 Enc LPF setting value.
(6) Is there slip present at the connection of encoder and motor shaft?

Poor encoder and motor connection may generate slip. Check the connection is tight.

12) Parameter change is not saved.

Turn the power off and turn it on. If problem persists, contact LS representatives.

13) "Fuse Open" trip occurs constantly.

(1) Is the input (line) voltage normal?

Check the line voltage input. If phase to phase unbalance exceeds 2% (greater than 6 V for 380 V input), an AC reactor should be provided. Otherwise, inverter may get damaged and A / S fee will be charged during Warranty period.
(2) Is the phase sequence of the output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$ correct?

Check the level of the input signal.
(3) Is the motor insulation damaged?

Various types of malfunction occur when the insulation is damaged. In general, operation stops at a certain speed (and more), overload or "OC$\mathrm{U}(\mathrm{V}, \mathrm{W})$ " trip occurs during regenerating. Or motor overheating and rotating speed oscillates. This condition persists for a while and then "Fuse Open" trip occurs. It marks motor insulation is damaged. In this case, replace the motor.

14) Motor input current is too large.

(1) Check the motor wiring.

Check the motor wiring for the use of $220 \mathrm{~V} / 380 \mathrm{~V}$ transition type motor. (Refer to Main circuit terminal)
(2) Are motor and inverter capacity set correctly?
(3) Is the setting of motor constants appropriate?

Refer to No. 2) and No. 9) and check the motor and inverter setting.
15) OC-U (V, W) trip occurs frequently during operation. (Motor input current is oscillating.)
(1) Check the encoder installation.

If encoder connection is poor, motor vibration affects encoder and incorrect encoder signal is input to the inverter. Vector inverter controls the speed from Encoder F/B value so it follows the input signal whether correct or not, increasing inverter current. If so, contact motor maker or encoder commission company.
(2) Is there no inverter output phase loss?
(3) Is the motor insulation not damaged?

Refer to No. 13) and check the inverter and motor.
16) Accel/Decel cannot be made properly and green lamp in [REV], [FWD] key is blinking. (load and frequency reference signal is oscillating.)
(1) Check motor wiring.
(2) FUN_40 ~ FUN_47 Accel/Decel time and DIS_00 motor load.

Blinking Green lamp marks motor is accelerating or decelerating. If the rotating speed oscillates and green lamp is blinking, it marks inverter output torque shortage due to mis-calculation of load. In this case, increase the torque limit to enable inverter to accelerate/decelerate within its rating. If load is set too high, it will shorten inverter life or damage to the unit.

Chapter 8 - Accessories

8.1 MCCB(LS), ELB(LS), Magnetic Contactor(LS), Input/Output Wire Specifications

Voltage	Motor (kW)	Inverter models	$\begin{aligned} & \text { MCCB, } \\ & \text { ELB (LS) } \end{aligned}$	Magnetic contactor (LS)
200V	2.2	SV022iV5-2DB	TD125U/30A, EBS33b30A	MC-18a
	3.7	SV037iV5-2DB	TD125U/30A, EBS33b30A	MC-32a
	5.5	SV055iV5-2DB	TD125U/50A, EBS53b50A	MC-40a
	7.5	SV075iV5-2DB	TD125U/60A, EBS63b60A	MC-50a
	11	SV110iV5-2DB	TD125U/100A, EBS103b100A	MC-65a
	15	SV150iV5-2DB	TD125U/125A, EBS203b125A	MC-100a
	18.5	SV185iV5-2DB	TS250U/150A, EBS203b150A	MC-130a
	22	SV220iV5-2DB	TS250U/175A, EBS203b175A	MC-150a
	30	SV300iV5-2	TS250U/225A, EBS203b225A	MC-150a
	37	SV370iV5-2	TS400U/300A, EBS403b300A	MC-225a
400V	2.2	SV022iV5-4DB	TD125U/15A, EBS33b15A	MC-12a
	3.7	SV037iV5-4DB	TD125U/15A, EBS33b15A	MC-18a
	5.5	SV055iV5-4DB	TD125U/30A, EBS33b30A	MC-22b
	7.5	SV075iV5-4DB	TD125U30A, EBS33b30A	MC-32a
	11	SV110iV5-4DB	TD125U/50A, EBS53b50A	MC-40a
	15	SV150iV5-4DB	TD125U/60A, EBS103b60A	MC-50a
	18.5	SV185iV5-4DB	TD125U/80A, EBS103b80A	MC-65a
	22	SV220iV5-4DB	TD125U/100A, EBS103b100A	MC-65a
	30	SV300iV5-4(380V)	TD125U/125A, EBS203b125A	MC-100a
	37	SV370iV5-4(380V)	TS250U/150A, EBS203b150A	MC-130a
	45	SV450iV5-4(380V)	TS250U/175A, EBS203b175A	MC-150a
	55	SV550iV5-4(380V)	TS250U/225A, EBS203b225A	MC-185a
	75	SV750iV5-4(380V)	TS400U/300A, EBS403b300A	MC-225a
	90	SV900iV5-4(380V)	TS400U/400A, EBS403b400A	MC-330a
	110	SV1100iV5-4(380V)	TS800U/500A, EBS603b500A	MC-400a
	132	SV1320iV5-4(380V)	TS800U/600A, EBS603b600A	MC-400a
	160	SV1600iV5-4(380V)	TS800U/600A, EBS603b600A	MC-630a
	220	SV2200iV5-4(380V)	ABS803/800A, EBS803b800A	MC-800a
	280	SV2800iV5-4	ABS1003/1000A, EBS1003b1000A	1000A
	315	SV3150iV5-4	ABS1203/1200A, EBS1203b1200A	1200A
	375	SV3750iV5-4	1400A, 1400A	1400A
	500	SV5000iV5-4	1600, 1600A	1600A

8. Accessories

※ Please refer to our LSIS MCCB, ELB and MC catalog for the your order. The product indicated with only current will be released in the near future.

8.2 AC input fuse, AC reactor, DC reactor

Voltage	Motor (kW)	Inverter models	AC input fuse	AC reactor	DC reactor
200 V	2.2	SV022iV5-2DB	25 A	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	-
	3.7	SV037iV5-2DB	40 A	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
	5.5	SV055iV5-2DB	40 A	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	-
	7.5	SV075iV5-2DB	50 A	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	-
	11	SV110iV5-2DB	70 A	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	-
	15	SV150iV5-2DB	100 A	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	-
	18.5	SV185iV5-2DB	100 A	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	-
	22	SV220iV5-2DB	125 A	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	-
	30	SV300iV5-2	150A	$0.08 \mathrm{mH}, 134 \mathrm{~A}$	$0.35 \mathrm{mH}, 152 \mathrm{~A}$
	37	SV370iV5-2	200A	$0.07 \mathrm{mH}, 160 \mathrm{~A}$	$0.30 \mathrm{mH}, 180 \mathrm{~A}$
400V	2.2	SV022iV5-4DB	10 A	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	-
	3.7	SV037iV5-4DB	20 A	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
	5.5	SV055iV5-4DB	20 A	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	-
	7.5	SV075iV5-4DB	30 A	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	-
	11	SV110iV5-4DB	35 A	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	-
	15	SV150iV5-4DB	45 A	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	-
	18.5	SV185iV5-4DB	60 A	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	-
	22	SV220iV5-4DB	70 A	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	1.19 ${ }^{-}$
	30	SV300iV5-4(380V)	100 A	$0.33 \mathrm{mH}, 67 \mathrm{~A}$	$1.19 \mathrm{mH}, 76 \mathrm{~A}$
	37	SV370iV5-4(380V)	100 A	$0.27 \mathrm{mH}, 82 \mathrm{~A}$	$0.98 \mathrm{mH}, 93 \mathrm{~A}$
	45	SV450iV5-4(380V)	100 A	$0.22 \mathrm{mH}, 100 \mathrm{~A}$	$0.89 \mathrm{mH}, 112 \mathrm{~A}$
	55	SV550iV5-4(380V)	150 A	$0.15 \mathrm{mH}, 121 \mathrm{~A}$	$0.75 \mathrm{mH}, 135 \mathrm{~A}$
	75	SV750iV5-4(380V)	200 A	$0.13 \mathrm{mH}, 167 \mathrm{~A}$	$0.44 \mathrm{mH}, 187 \mathrm{~A}$
	90	SV900iV5-4(380V)	250 A	$0.11 \mathrm{mH}, 201 \mathrm{~A}$	$0.35 \mathrm{mH}, 225 \mathrm{~A}$
	110	SV1100iV5-4(380V)	300 A	$0.09 \mathrm{mH}, 245 \mathrm{~A}$	$0.30 \mathrm{mH}, 274 \mathrm{~A}$
	132	SV1320iV5-4(380V)	400 A	$0.08 \mathrm{mH}, 290 \mathrm{~A}$	$0.26 \mathrm{mH}, 324 \mathrm{~A}$
	160	SV1600iV5-4(380V)	400 A	$0.06 \mathrm{mH}, 357 \mathrm{~A}$	$0.22 \mathrm{mH}, 399 \mathrm{~A}$
	220	SV2200iV5-4(380V)	800A	$0.029 \mathrm{mH}, 799 \mathrm{~A}$	$0.1 \mathrm{mH}, 530 \mathrm{~A}$
	280	SV2800iV5-4	900A	$0.029 \mathrm{mH}, 799 \mathrm{~A}$	$0.090 \mathrm{mH}, 836 \mathrm{~A}$
	315	SV3150iV5-4	1000A	$0.024 \mathrm{mH}, 952 \mathrm{~A}$	$0.076 \mathrm{mH}, 996 \mathrm{~A}$
	375	SV3750iV5-4	1200A	$0.024 \mathrm{mH}, 952 \mathrm{~A}$	$0.064 \mathrm{mH}, 1195 \mathrm{~A}$
	500	SV5000iV5-4	1600A	$0.021 \mathrm{mH}, 1248 \mathrm{~A}$	-

※ For 2.2~22kW, $D C$ reactor standard is not provided, for not having $D C$ reactor wiring terminal.

8. Accessories

8.3 The Selection of Braking Resistor and the Unit

8.3.1 The selection of dynamic braking resistor

Resistor values shown in the following table is calculated on the basis of 150% of rated braking torque, 5% ED 1).
Power rating of resistor should be doubled for resistor frequency 10\% ED use. Additional braking unit should be installed for above SV 300iV5-2 / SV300iV5-4.

Inverter	Rated Capacity (5\% ED)	
	$[\Omega]$	$[W]^{(2)}$
SV 022iV5-2 DB	50	400
SV 037iV5-2 DB	33	600
SV 055iV5-2 DB	20	800
SV 075iV5-2 DB	15	1200
SV 110iV5-2 DB	10	2400
SV 150iV5-2 DB	8	2400
SV 185iV5-2 DB	5	3600
SV 220iV5-2 DB	5	3600
SV 022iV5-4 DB	200	400
SV 037iV5-4 DB	130	600
SV 055iV5-4 DB	85	800
SV 075iV5-4 DB	60	1200
SV 110iV5-4 DB	40	2400
SV 150iV5-4 DB	30	2400
SV 185iV5-4 DB	20	3600
SV 220iV5-4 DB	20	3600

\checkmark (1): ED is based on 100 seconds.
$\checkmark(2)$: Rated capacity is based on the self-cooling.

8.3.2 Wiring of the temperature sensor on braking resistor

Temperature sensor is attached in the LSIS braking resistors to prevent the fire.

Terminal of Braking Resistor	Power Terminal of Inverter	Action
B1, B2	P, BR	-
P7, CM	One of the multi-function input terminals (P1 ~ P7) should be set to 'External Fault Signal b Contact'.	Contact is normally ON at the ambient temperature and is OFF in case of over-temperature.

8. Accessories

8.3.3 Braking unit

(1) SV037DBH-2 : 37kW/200V Class Braking Unit (10\% ED)
(2) SV037DBH-4 : 37kW/400V Class Braking Unit (10\% ED)
(3) SV075DBH-4:75kW/400V Class Braking Unit (10\% ED)
(4) SV075DB-4 : 75kW/400V Class Braking Unit (100\% ED)
(5) SV220DB-4 : 220kW/400V Class Braking Unit (100\% ED)

- The Combination of two braking unit for 400 V class is possible for more than SV900iV5-4 capacity.
- When ED is more than 10%, Use the braking unit for 100\% ED (Ex: vertical load such as carne, hoist).
- When the inverter capacity is more than 220 kW , use the braking unit for SV2200DB-4 (100\% ED).
- Refer to description manual included in braking unit product for the use of 100\% ED braking unit.

8.3.4 Combination of braking unit

Inverter Braking unit		SV[][]] iV5-2	SV[][][][]iV5-4				
		300/370	300/370	450/550/750	$\begin{aligned} & 900 / 1100 / \\ & 1320 / 1600 \end{aligned}$	2200	$\begin{gathered} 2800 / 3150 / \\ 3750 \end{gathered}$
200V	37kW	1	-	-	-	-	-
400V	37 kW	-	1	-	-	-	-
	75kW	-	-	1	2	-	-
	220kW	-	-	-	-	1	2

Note)

1. Example) Combine two braking units of $75 \mathrm{~kW}-400 \mathrm{~V}$ Class for SV-900iV54(90kW) Class.
2. Refer to the Braking Unit user manual that came with the braking unit.
3. Please contact to LSIS customer service center about above 200kW.

8. Accessories

8.3.5 Braking resistor for braking unit

Braking Unit	$\mathbf{1 0 0 \%}$ of Braking Torque, $\mathbf{1 0 \%}$ ED	
	Resistance [$\mathbf{\Omega}]$	Rated Power [kW]
$37 \mathrm{~kW}-200 \mathrm{~V}$	3	5
$37 \mathrm{~kW}-400 \mathrm{~V}$	12	5
$75 \mathrm{~kW}-400 \mathrm{~V}$	6	10
$75 \mathrm{~kW}-400 \mathrm{~V}$	6	Refer to extra manual in the case of
$220 \mathrm{~kW}-400 \mathrm{~V}$	2	100% ED braking unit.

8. Accessories

M E M O

Chapter 9 - Dimensions

■ SV 022, 037, 055, 075, 110, 150, 185, 220iV5-2DB (MD)
■ SV 022, 037, 055, 075, 110, 150, 185, 220iV5-4DB (MD) (MD: Mold type)

- Dimensions (unit: mm [inches])

Model [kW]	W1	W2	$\mathrm{H1}$	H 2	H3	D1	A	B
2.2/3.7-2/4	200	180	$\begin{gathered} 284 \\ {[11.18]} \end{gathered}$	$\begin{gathered} 269 \\ {[10.69]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.29]} \end{gathered}$	$\begin{gathered} 207 \\ {[8.15]} \end{gathered}$	$\begin{gathered} \hline 6 \\ {[0.23]} \end{gathered}$	$\begin{gathered} \hline 6 \\ {[0.23]} \end{gathered}$
5.5/7.5-2/4	[7.87]	[7.09]	$\begin{gathered} 355 \\ {[13.97]} \end{gathered}$	$\begin{gathered} 340 \\ {[13.38]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.29]} \end{gathered}$	$\begin{gathered} 202 \\ {[7.95]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.23]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.23]} \end{gathered}$
11/15-2/4	$\begin{gathered} 250 \\ {[9.84]} \end{gathered}$	$\begin{gathered} 230 \\ {[9.06]} \end{gathered}$	$\begin{gathered} 385 \\ {[15.16]} \end{gathered}$	$\begin{gathered} 370 \\ {[14.57]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.29]} \end{gathered}$	$\begin{gathered} 221 \\ {[8.70]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.35]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.35} \end{gathered}$
18.5/22-2/4	$\begin{gathered} 304 \\ {[11.97]} \end{gathered}$	$\begin{gathered} 284 \\ {[11.18]} \end{gathered}$	$\begin{gathered} 460 \\ {[18.11]} \end{gathered}$	$\begin{gathered} 445 \\ {[17.52]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.29]} \end{gathered}$	$\begin{gathered} 254 \\ {[10.00]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.35]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.35]} \end{gathered}$

■ SV055, 075, 110, 150, 185, 220iV5-2 DB
■ SV055, 075, 110, 150, 185, 220iV5-4 DB

- SV055, 075, 110, 150, 185, 220iV5-4 DC (DC: DC power input type)

- Dimensions (unit: mm [inches])
*DC has a same dimension as AC.

Model [kW]	W1	W2	H1	H2	H3	D1	A	B
$5.5 / 7.5-2 / 4$	234.4	180	406.2	391.2	7.5	221.1	6	6
	$[9.22]$	$[7.08]$	$[15.9]$	$[15.4]$	$[0.29]$	$[8.7]$	$[0.23]$	$[0.23]$
$11 / 15 / 18.5 / 22-2 / 4$	335	284	526	509	10	248.6	9	9
	$[13.1]$	$[11.1]$	$[20.7]$	$[20.0]$	$[0.39]$	$[9.78]$	$[0.35]$	$[0.35]$

- SV300, 370iV5-2
- SV300, 370, 450, 550, 750iV5-4
- SV300, 370, 450, 550, 750iV5-4 DC (DC: DC power input type)

- Dimensions (unit: mm [inches])
*DC has a same dimension as AC.

Model [kW]	W1	W2	H1	H2	H3	D1	A	B
$30 / 37-2 / 4$	350	270	680	660	12	308.2	10	10
	$[13.7]]$	$[10.6]$	$[26.7]$	$[26.0]$	$[0.47]$	$[12.1]$	$[0.39]$	$[0.39]$
	$35 / 55 / 75-4$	375	275	780	758.5	11	326	11
11								
	$[14.7]$	$[10.8]$	$[30.7]$	$[29.8]$	$[0.43]$	$[12.8]$	$[0.43]$	$[0.43]$

■ SV900, 1100, 1320, 1600iV5-4

- SV900, 1100, 1320, 1600iV5-4 (DC: DC power input type)

- Dimensions (unit : mm[inches])

Model [kW]	W1	W2	H1	H2	H3	D1	A	B
$90 / 110-4$	530	430	780	760	11.5	335	13	13
	$[20.8]$	$[16.9]$	$[30.7]$	$[29.9]$	$[0.45]$	$[13.2]$	$[0.51]$	$[0.51]$
	$132 / 160-4$	530	430	1000	980	11.5	345	13
13								
	$[20.8]$	$[16.9]$	$[39.3]$	$[38.5]$	$[0.45]$	$[13.5]$	$[0.51]$	$[0.51]$

- SV2200iV5-4
- SV2200iV5-4DC (DC: DC power input type)

- Dimensions (unit : mm[inches])
*DC has a same dimension as AC.

Model [kW]	W1	W2	H1	H2	H3	D1	A	B
$220-4$	680	540	998	968.5	17.5	403	14	14
	$[26.77]$	$[21.26]$	$[39.29]$	$[38.13]$	$[0.68]$	$[15.87]$	$[0.55]$	$[0.55]$

■ SV2800, 3150, 3750iV5-4
■ SV2800, 3150, 3750iV5-4DC (DC: DC power input type)

- Dimensions (unit : mm[inches])
*DC has a same dimension as AC.

Model [kW]	W1	W2	H1	H2	H3	D1	A	B
$280-4$	772	500	1140.5	1110	15	442	13	13
	$[30.39]$	$[19.69]$	$[44.90]$	$[43.70]$	$[0.59]$	$[17.40]$	$[0.51]$	$[0.51]$
$315 / 375-4$	922	580	1302.5	1271.5	15.5	495	14	14
	$[6.30]$	$[22.83]$	$[51.28]$	$[50.06]$	$[0.61]$	$[19.49]$	$[0.55]$	$[0.55]$

■ SV5000iV5-4

- SV5000iV5-4DC (DC: DC power input type)

- Dimensions (unit : mm[inches]) *DC has a same dimension as AC.

Model [kW]	W1	W2	W3	W4	H1	H2	H3	H4	D1	A	B
500kW -4	1200 (47.25)	1050	$71.34)$	75	350	$135)$	$(1330$	1280	20	1225	550
(132.36)	(50.39)	26	13								
(0.79)	(48.23)	(21.65)	(10.24)	(0.51)							

ADDITIONAL UL MARKING

1. Short Circuit Rating

"Suitable For Use On A Circuit Capable Of Delivering Not More ThanTable1* RMS Symmetrical Amperes, 240 for rated 240V drives or 480 for rated 480V drives Volts Maximum," or equivalent.

Table1*

Inverter Capacity	Rating
200/400V Class: $5.5 \mathrm{~kW}, 7.5 \mathrm{~kW}, 11 \mathrm{~kW}, 15 \mathrm{~kW}, 18.5 \mathrm{~kW}, 22 \mathrm{~kW}, 30 \mathrm{~kW}, 37 \mathrm{~kW}$	$5,000 \mathrm{~A}$
400V Class: $45 \mathrm{~kW}, 55 \mathrm{~kW}, 75 \mathrm{~kW}, 90 \mathrm{~kW}, 110 \mathrm{~kW}, 132 \mathrm{~kW}$	$10,000 \mathrm{~A}$
400V Class: $160 \mathrm{~kW}, 220 \mathrm{~kW}$	$18,000 \mathrm{~A}$

2. SHORT CIRCUIT FUSE/BREAKER MARKING

Use Class H or K5 UL Listed Input Fuse and UL Listed Breaker Only. See the table below for the Voltage and Current rating of the fuses and the breakers.

Input [V]	Inverter [kW]	External Fuse		Breaker		Internal Fuse			
		Current [A]	Voltage [V]	Current [A]	Voltage [V]	Current [A]	Voltage [Vac/dc]	Manufacturer	Model Number
$\begin{gathered} 200 \\ \text { Class } \end{gathered}$	5.5	40	500	50	220	60	250	Hinode Elec	250GH-60
	7.5	50	500	60	220	60	250		250GH-60
	11	70	500	100	220	125	250		250GH-125
	15	100	500	100	220	150	250		250GH-150
	18.5	100	500	225	220	175	250		250GH-175
	22	125	500	225	220	225	250		250GH-225
	30	150	500	225	220	250	250		250GH-250S
	37	200	500	225	220	250	250		250GH-250S
$\begin{array}{\|c} \hline 400 \\ \text { Class } \end{array}$	5.5	20	500	30	460	35	660		660GH-35
	7.5	30	500	30	460	35	660		660GH-35
	11	35	500	50	460	63	660		660GH-63
	15	45	500	60	460	80	660		660GH-80
	18.5	60	500	100	460	100	660		660GH-100
	22	70	500	100	460	125	660		660GH-125
	30	100	500	100	460	125	600		600FH-125S
	37	100	500	225	460	150	600		600FH-150S
	45	100	500	225	460	200	600		600FH-200S
	55	150	500	225	460	200	600		600FH-200S
	75	200	500	225	460	125	600		600FH-125S
	90	250	500	400	460	200	600		600FH-200S
	110	300	500	400	460	200	600		600FH-200S
	132	400	500	400	460	300	600		600FH-300S
	160	400	500	400	460	300	600		600FH-300S
	220	-	-	600	460	600	600		600SPF-600UL

3. FIELD WIRING TERMINAL

1) Use Copper wires only with Copper conductors, $75^{\circ} \mathrm{C}$
2) Input and motor output terminal blocks are intended only for use with ring type connectors.

4. CAUTION-Risk of Electric Shock

"Before opening the cover, disconnect all power and wait at least 10 minutes" Units suitable only for use in a pollution degree 2 environment. Be sure to mount the inverter in a forced-ventilated operating panel.

We, the undersigned,

Representative:
Address:

Manufacturer:
Address:

LSIS Co., Ltd.
LS Tower, 127, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

LSIS Co., Ltd.
56, Samseong 4-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, Korea

Certify and declare under our sole responsibility that the following apparatus:
Type of Equipment: Inverter (Power Conversion Equipment)
Model Name:
STARVERT-iV5 series

Trade Mark: LSIS Co., Ltd.

Conforms with the essential requirements of the directives:

2014/35/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits

2014/30/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility

Based on the following specifications applied:
EN 61800-3:2004
EN 61800-5-1:2007
and therefore complies with the essential requirements and provisions of the 2014/35/CE and 2014/30/CE Directives.

Place:
Cheonan, Chungnam,
Korea

Mr. Sang Chin Moon / General Manager
(Full name / Position)

RFI FILTERS

```
THE LS RANGE OF POWER LINE FILTERS FF ( Footprint ) - FE ( Standard )
SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LG INVERTERS.
THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE
TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO
CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 50081.
```


CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LAKAGE CURRENT AT WORST CASE IN THE BELOW TABLE.

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.

4-) Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.

6-) Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
7-) Connect any control cables as instructed in the inverter instructions manual.
IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

iV5 series / Footprint Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \mathrm{L} \quad \mathrm{~W} \quad \mathrm{H} \end{aligned}$	MOUNTING Y X	WEIGHT	MOUNT	FIG	$\begin{aligned} & \text { OUTPUT } \\ & \text { CHOKES } \end{aligned}$
THREE PHASE					NOM. MAX.						
SV022iV5-2 (DB)	2.2kW	FFV5-T020-(x)	20A	250VAC	0.5 mA 27 mA	$329 \times 199.5 \times 60$	315×160	1.8Kg.	M5	A	FS-2
SV037iV5-2 (DB)	3.7 kW										
SV055iV5-2 (DB)	5.5 kW	FFV5-T030-(x)	30A	250VAC	0.5 mA 27 mA	$451 \times 234.5 \times 60$	437x190	2.1 Kg .	M5	A	FS-2
SV075iV5-2 (DB)	7.5kW	FFV5-T050-(x)	50A	250VAC	0.5 mA 27 mA	$451 \times 234.5 \times 60$	437×190	2.6 Kg .	M5	A	FS-2
SV110iV5-2 (DB)	11kW	(100A	250VAC	0.5 mA 27 mA
SV150iV5-2 (DB)	15kW										
SV185iV5-2 (DB)	18kW	-	120A	250VAC	0.5 mA 27 mA					-	-
SV220iV5-2 (DB)	22kW										
SV300iV5-2 (DB)	30kW	-	150A	250VAC	$0.5 \mathrm{~mA} \mathrm{27mA}$				-		-
SV370iV5-2 (DB)	37kW	-	180A	250VAC	0.5 mA 27 mA	-	-	-	-	-	-
SV022iV5-4 (DB)	2.2kW	FFV5-T011-(x)	11A	380VAC	0.5 mA 27 mA	$329 \times 199.5 \times 60$	315×160	1.5Kg.	M5	A	FS-2
SV037iV5-4 (DB)	3.7 kW										
SV055iV5-4 (DB)	5.5 kW	FFV5-T030-(x)	30A	380VAC	0.5 mA 27 mA	451x234.5x60	437×190	2 Kg .	M5	A	FS-2
SV075iV5-4 (DB)	7.5kW										
SV110iV5-4 (DB)	11kW	FFV5-T051.(x)	51A	380VAC	0.5 mA 27 mA	$605 \times 335 \times 65$	579.5×265	2.5 Kg	M8	A	FS-2
SV150iV5-4 (DB)	15kW										
SV185iV5-4 (DB)	18kW	FFV5-T060-(x)	60A	380VAC	0.5 mA 27 mA	$605 \times 335 \times 65$	579.5×265	2.8 Kg .	M8	A	FS-2
SV220iV5-4 (DB)	22 kW	FFV5-T070-(x)	70A	380VAC	0.5 mA 27 mA	$605 \times 335 \times 65$	579.5×265	2.8 Kg .	M8	A	FS-3
SV300iV5-4 (DB)	30kW	FFV5-T071-(x)	71A	380VAC	0.5 mA 27 mA	756x350x65	730.5x281	3 Kg .	M8	A	FS-3
SV370iV5-4 (DB)	37kW	.	100A	380VAC	0.5 mA 27 mA	-	-	.	.	-	.
SV450iV5-4 (DB)	45kW	-	120A	380VAC	0.5 mA 27 mA		-		-	-	-
SV550iV5-4 (DB)	55kW										
SV750iV5-4 (DB)	75kW	-	170A	380VAC	0.5 mA 27 mA		-		-		-
SV900iV5-4 (DB)	90kW	-	230A	380VAC	0.5 mA 27 mA	-	-	-	-	-	-
SV1100iV5-4 (DB)	110kW	-	400A	380VAC	0.5 mA 27 mA	-	-	-	-		-
SV1320iV5-4 (DB)	132kW										
SV1600iV5-4 (DB)	160kW	-	600A	380VAC	0.5 mA 27 mA	-	-	-	-	-	-
SV2200iV5-4 (DB)	220kW										
SV2800iV5-4 (DB)	280kW	-	1000A	380VAC	0.5 mA 27 mA	-	-	\cdot	-	-	-
SV3150iV5-4 (DB)	315 kW										
SV3750iV5-4 (DB)	375kW										
SV055iV5-2DB (MD)	5.5 kW	FFV5-T031-(x)	31A	250VAC	0.5 mA 27 mA	400x199.5x60	386×160	2 Kg .	M5	A	FS-2
SV075iV5-2DB (MD)	7.5 kW	FFV5-T052-(x)	52A	250VAC	0.5 mA 27 mA	$400 \times 199.5 \times 60$	386×160	2.5 Kg .	M5	A	FS-2
SV110iV5-2DB (MD)	11kW	.	100A	250VAC	0.5 mA 27 mA		.	.		A	FS-2
SV150iV5-2DB (MD)	15kW										
SV185iV5-2DB (MD)	18kW	-	120A	250VAC	0.5 mA 27 mA					A	FS-2
SV220iV5-2DB (MD)	22kW										
SV055iV5-4DB (MD)	5.5 kW	FFV5-T031-(x)	31A	380VAC	0.5 mA 27 mA	400x199.5x60	386×160	2 Kg .	M5	A	FS-2
SV075iV5-4DB (MD)	7.5 kW										
SV110iV5-4DB (MD)	11 kW	FFV5-T053-(x)	53A	380VAC	0.5 mA 27 mA	466x258x65	440.5×181	2.5 Kg	M5	A	FS-2
SV150iV5-4DB (MD)	15kW										
SV185iV5-4DB (MD)	18kW	FFV5-T061-(x)	61A	380VAC	0.5 mA 27 mA	$541 \times 312 \times 65$	515.5×235	2.6 Kg .	M8	A	FS-2
SV220iV5-4DB (MD)	22kW	FFV5-T072-(x)	72A	380VAC	0.5 mA 27 mA	$541 \times 312 \times 65$	515.5x235	2.8 Kg .	M8	A	FS-3

X (1) Industrial environment EN 50081-2 (A class) \rightarrow EN61000-6-4: 02
(2) Domestic and industrial environment EN50081-1 (B class) \rightarrow EN61000-6-3: 02

Standard Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	$\begin{aligned} & \text { LEAKAGE } \\ & \text { CURRENT } \end{aligned}$	$\begin{aligned} & \text { DIIMENSIONS } \\ & \text { L } \end{aligned}$	MOUNTING Y	WEIGH	MOUNT	FIG.	$\begin{aligned} & \text { OUTPUT } \\ & \text { CHOKES } \end{aligned}$
E PHASE ${ }^{\text {NOM. }}$ MAX.											
SV022iV5.2 (DB	2.2 kW	FE-T020-(x)	20A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258×106	2.2 Kg .	\cdots	B	FS-2
SV037iV5-2 DB	3.7 kW 5.5 kW		2 A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258x106	2.2kg.	-	B	FS-2
SV075iV5-2 DB	7.5kW	FE-T050-(x)	50A	250VAC	0.5 mA 27 mA	270x140x90	258×106	3.2Kg.	---	B	FS.2
SV110iV5-2 DB	11kW	FE-T100-(x)	100A	250VAC	0.5 mA 27 mA	$425 \times 200 \times 130$	408×166	13.8 kg .	--	B	FS.3
SV150iV5-2 DB	15kW										
SV185iV5.2 DB	18kW	FE-T120.(x)	120A	250VAC	0.5 mA 27 mA	$425 \times 200 \times 130$	408×166	13.8 Kg .	---	B	FS.3
SV220iV5-2 DB	22kW		120	250VAC	0.5 mA 27 mA	$480 \times 200 \times 160$	468×166	\% 6 kg.	.-.	B	-
SV370iV5-2 DB	37kW	FE-T170.	170A	250VAC	0.5 mA 27 mA	$480 \times 200 \times 160$	468×166	16 Kg .	---	B	FS-3
SV022iV5-4 (DB	2.2kW	FE-T012.(x)	12A	380VAC	0.5 mA 27 mA	$250 \times 110 \times 60$	238×76	1.6 Kg .	---	B	FS-2
SV037iV5-4 DB	3.7 kW										
SV055iV5-4 DB	5.5 kW	FE-T030-(x)	30A	380VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	B	S 2
SV075iV5-4 DB	7.5kW										
SV110iV5-4 (DB)	11kW	FE-T050.(x)	50A	380VAC	0.5 mA 27 mA	$270 \times 140 \times 90$	258x106	3.2 Kg .	--	B	FS-2
SV150iV5-4 DB	15 kW										
SV185iV5-4 DB	18 kW	FE-T060-(x)	60A	380VAC	0.5 mA 27 mA	270x140×90	258x106	3.5Kg.	---	B	FS.2
SV220iV5-4 DB	22kW	FE-T070.(x)	70A	380VAC	0.5 mA 27 mA	350x180x90	338x146	7.5 Kg .	---	B	FS.3
SV300iV5-4 DB	30kW										
SV370iV5-4 DB	37kW	FE-T100-(x)	100 A	380VAC	1.3 mA 150 mA	$425 \times 200 \times 130$	408×166	13.8Kg.	---	B	FS.3
SV450iV5-4 DB	45kW	FE-T120.(x)	120A	380VAC	1.3 mA 150 mA	$425 \times 200 \times 130$	408×166	13.8 kg .	---	B	FS.3
SV550iV5-4 DB	55kW										
SV750iV5-4 DB	75kW	FE-T170-(x)	170A	380VAC	1.3 mA 150 mA	480x200x160	468×166	16 Kg.	---	B	FS.3
SV900iV5-4 DB	90kW	FE-T230-(x)	230A	380VAC	1.3 mA 150 mA	580x250x205	560×170	22.6 Kg .	---	B	FS-4
SV1100iV5-4 (DB)	110 kW	FE-T400-(x)	400A	380VAC	1.3 mA 150 mA	392x260x116	240x235	10.3 Kg .	---	C	FS-4
SV1320iV5-4 DB	132kW										
SV1600iV5-4 (DB SV2200V5-4 DB	160 kW 200 kW	FE-T600.(x)	600A	380VAC	1.3 mA 150 mA	$392 \times 260 \times 116$	240×235	10.3 Kg .	---	C	FS-4
SV2200iV5-4 (DB SV2800iV5-4	220kW 280kW			SBOVAC	1.3mA 150 mA	392200×10			---	C	
SV3150iV5-4 DB	315 kW	FE.T1000. (x)	1000A	380VAC	1.3 mA 150 mA	460x280x166	290×255	18Kg.	---	C	FS-4
SV3750iV5-4 DB	375 kW										
SV055iV5-2DB (MD)	5.5kW	FE-TO30-(x)	30A	250VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	B	FS-2
SV075iV5-2DB (MD	7.5kW	FE-T050. x)	50A	250VAC	0.5 mA 27 mA	270x140x90	258x106	3.2Kg.	---	B	FS-2
SV110iV5-2DB MD	11kW	FE-T100.(x)	100 A	250VAC	0.5 mA 27 mA	425x200x130	408x166	13.8 kg .	---	B	FS.3
SV150iv5-2DB (MD	15kW										
SV185iV5-2DB (MD	18kW	FE-T120-(x)	120A	250VAC	0.5 mA 27 mA	$425 \times 200 \times 130$	408×166	13.8 kg .	---	B	FS-3
SV220iV5-2DB (MD SV055iV5-4DB	22kW										
SV055iV5-4DB (MD	5.5 kW	FE-T030.(x)	30A	380VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	B	FS-2
SV075iV5-4DB MD	7.5 kW										
SV110iV5-4DB (MD SV150iV5-4DB /	11 kW	FE-T050.(x)	50A	380VAC	0.5 mA 27 mA	$270 \times 140 \times 90$	258x106	3.2 Kg .	---	B	FS.2
SV150iV5-4DB (MD)	15kW										
SV185iV5-4DB (MD)	18kW	$\begin{aligned} & \text { FE-T060:(} x \mid \\ & \text { FE-T070: }(x) \end{aligned}$	$\begin{aligned} & 60 \mathrm{~A} \\ & \hline 70 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 380VAC } \\ & \hline \text { 380VAC } \\ & \hline \end{aligned}$	0.5 mA 27 mA 0.5 mA 27 mA	$350 \times 180 \times 90$	338×146	$\begin{aligned} & 3.5 \mathrm{~kg} . \\ & \hline 7.5 \mathrm{Kg} . \\ & \hline \end{aligned}$	---	B	FS-2FS-3
SV220iV5-4DB (MD)	22kW										

X (1) Industrial environment EN 50081-2 (A class) \rightarrow EN61000-6-4 :02
(2) Domestic and industrial environment EN50081-1 (B class) \rightarrow EN61000-6-3:02

DIMENSIONS

FF SERIES (Footprint)

FIG. A

FE SERIES (Standard)

FIG. B

FIG.C

VECTOR MOTOR CONTROL IBÉRICA S.L.
C/ Mar del Carib, 10 - Polígono Industrial La Torre del Rector 08130 Santa Perpètua de Mogoda - BARCELONA (ESPAÑA) Tel. (+34) 935748206 - Fax (+34) 935748248 - info@vmc.es

UL mark

The UL mark applies to products in the United States and Canada. This mark indicates that UL has tested and evaluated the products and determined that the products satisfy the UL standards for product safety. If a product received UL certification, this means that all components inside the product had been certified for UL standards as well.

Suitable for Installation in a Compartment Handing Conditioned Air

CE mark

C ϵ
The CE mark indicates that the products carrying this mark comply with European safety and environmental regulations. European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers and the EMC guidelines for safe noise control.

Low Voltage Directive

We have confirmed that our products comply with the Low Voltage Directive (EN 61800-5-1).

EMC Directive

The Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3) covers requirements stated for drives.

EAC mark
 EHI

The EAC (EurAsian Conformity) mark is applied to the products before they are placed on the market of the Eurasian Customs Union member states.
It indicates the compliance of the products with the following technical regulations and requirements of the Eurasian Customs Union:
Technical Regulations of the Customs Union 004/2011 "On safety of low voltage equipment"
Technical Regulations of the Customs Union 020/2011 "On electromagnetic compatibility of technical products"

Warranty

Maker	LSIS Co., Ltd.		Installation (Start-up) Date	
Model No.	SV-iV5 New Controller		Warranty Period	
Customer Information	Name			
	Address			
	Tel.			
Sales Office (Distributor)	Name			
	Address			
	Tel.			

This product has been manufactured through a strict quality management and inspection process by LS Technical Team. The warranty period is 18 months from the date manufactured, provided that, the warranty period is subject change depending on the terms and condition of the agreement under separate cover.

FOC Service

If there is any failure in the product during the afore-mentioned warranty period you can have it repaired FOC by requesting our distributor or designated service center subject that you are found to have used it under our recommended environment. For further details, please refer to out company's regulation.

Charged Service

- In the event of any of the following cases, the service will be charged.
- The failure occurred from the consumer's improper storage, handling, and careless handling
- The failure occurred from the consumer's error in the design of software or hardward
- The failure occurred from the error of power source and the defect of the connector
- The failure occurred from the force majeure (fire, flood, gas disaster, earthquake, etc.)
- The product was modified or repaired at the discretion of the consumer in the place other than our Distributor or the Service Center.
- The name plate provided by LS is not attached on the product
- The product was used in an improper way or beyond the operating range.
- Repair Warranty Period for the Discontinued Model
- For the product discontinued, the repair service will be provided with charge for five years from the date discontinued.
- Waiver of the warranty for the mechanical loss, etc.

LSIS Co., Ltd. doesn't bear any responsibility to indemnify indirect, special, incidental, or consequential loss (including the indemnification of sales loss, loss profit, etc.

Revision History

No.	Date	Edition	Changes
1	July, 2011	First Release	New controller ver. 3.00 released
2	April, 2013	$2^{\text {nd }}$ Edition	Ver. 3.20 / Short floor operation, Profibus data Swap function added

Environment management	
LSIS regards the environmental preservation as a high priority, and all our employees do our best for the environmental preservation fresh earth.	$\begin{aligned} & \text { LS inverter is designed for } \\ & \text { preserving environment. } \\ & \text { When you disuse the products, } \\ & \text { you can recycle by separating } \\ & \text { them to iron, aluminum, bronze, } \\ & \text { and synthetic plastic (cover). } \end{aligned}$

LSis

- HEAD OFFICE

Address: (HoGye-Dong) 127, LS-ro, DongAn-Gu, AnYang-Si, GyeongGi-Do, Korea http://www.lsis.com

- LSIS Europe B.V >> Amsterdam, Netherland

Address: 1st FL., Tupolevlaan 48, 1119NZ Schiphol-Rijk, The Nether lands
Tel: 31-20-654-1420 Fax: 31-20-654-1429

- LSIS (Middle East) FZE Office >> Dubai, UAE

Address: LOB 19-205, JAFZA View Tower, Jebel Ali Free Zone,
Dubai, United Arab Emirates
Tel: 971-4-886-5360 Fax: 971-4-886-5361

- Dalian LSIS Co., Ltd. >> Dalian, China

Address: No. 15 Liaohexi 3-Road, Economic and Technical Development Zone, Dalian 116600, China
Tel: 86-411-8730-7510 Fax: 86-411-8730-7560

- LSIS Wuxi Co., Ltd. >> Wuxi, China

Address: No. 1 Lexing Road, Wuxi National High\&New Tech Industrial Development Area, Wuxi214028, Jiangsu, P.T.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078

- LSIS-VINA Co., Ltd. >> Hanoi, Vietnam

Address: Nguyen Khe, Dong Anh, Ha Noi, Vietnam Tel: 84-4-6275-8055 Fax: 84-4-3882-0220

- LSIS Co., Ltd. Rep. Office >> Hochiminh, Vietnam

Address: Gema Dept Tower 18F, 6 Le Thanh Ton, District 1, HCM, Vietnam
Tel: 84-8-3823-7890 Fax:

- LSIS Tokyo Office >> Tokyo, Japan

Address: Tokyo Club Building 13F, 2-6, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo, 100-0013
Tel: 81-3-6268-8241 Fax: 81-3-6268-8240

- LSIS Shanghai Office>> Shanghai, China

Address: 32nd Floor, International Corporate City, No. 3000
NorthZhongshan Road, Putuo District, Shanghai, China, 200063 Tel: 86-21-5237-9977 (609) Fax: 86-21-5237-7189

- LSIS Beijing Office >> Beijing, China

Address: Room 2306, Building B Landgent Center,
No. 24 Middle Road, East 3rd Ring Road,
Chaoyang District, Beijing, P.R. China
Tel: 86-10-5761-3127, 7 Fax: 86-10-5761-3128

- LSIS Guangzhou Office >> Guangzhou, China

Address: Room 1818-1820, Xinyuan Building,NO. 898
Tianhe North Road, Tianhe District, Guangzhou, P.R China
Tel: 86-20-8326-6784 Fax: 86-20-8326-6287

- LSIS Chengdu Office >> Chengdu, China

Address: Room1710, 17/F Huamin Empire Plaza,
NO. 1 Fuxin Road, Chengdu, P.R. China
Tel: 86-28-8670-3200 Fax: 86-28-8670-3203

- LSIS Qingdao Office >> Qingdao, China

Address: Room2001, Galaxy Building, 29 ShanDong Road, ShiNan District, QingDao, ShanDong, P.R. China
Tel: 86-532-8501-6058 Fax: 86-532-8501-6057

Disclaimer of Liability

LSIS has reviewed the information in this publication to ensure consistency with the hardware and software described. However, LSIS cannot guarantee full consistency, nor be responsible for any damages or compensation, since variance cannot be precluded entirely. Please check again the version of this publication before you use the product.

[^0]: CAUTION

 - NEVER change the switch setting for Encoder Type during inverter run. Otherwise, it may cause inverter trip, adversely affecting the entire system.
 Therefore, verify the switch is correctly set before operation.

